我正在尝试使用scikit-learn的CountVectorizer
来计算一个简单的单词频率。
import pandas as pd
import numpy as np
from sklearn.feature_extraction.text import CountVectorizer
texts=["dog cat fish","dog cat cat","fish bird","bird"]
cv = CountVectorizer()
cv_fit=cv.fit_transform(texts)
print cv.vocabulary_
{u'bird': 0, u'cat': 1, u'dog': 2, u'fish': 3}
我原以为它会返回{u'bird': 2, u'cat': 3, u'dog': 2, u'fish': 2}
。
答案 0 :(得分:28)
cv.vocabulary_
是一个字典,其中的键是您找到的字词(要素),值是索引,这就是为什么它们会0, 1, 2, 3
。只是运气不好,看起来与你的计数相似:)
您需要使用cv_fit
对象来获取计数
from sklearn.feature_extraction.text import CountVectorizer
texts=["dog cat fish","dog cat cat","fish bird", 'bird']
cv = CountVectorizer()
cv_fit=cv.fit_transform(texts)
print(cv.get_feature_names())
print(cv_fit.toarray())
#['bird', 'cat', 'dog', 'fish']
#[[0 1 1 1]
# [0 2 1 0]
# [1 0 0 1]
# [1 0 0 0]]
数组中的每一行都是原始文档(字符串)之一,每列是一个要素(单词),元素是该特定单词和文档的计数。您可以看到,如果您对每列进行求和,您将获得正确的数字
print(cv_fit.toarray().sum(axis=0))
#[2 3 2 2]
老实说,我建议使用collections.Counter
或来自NLTK的东西,除非你有一些特定的理由使用scikit-learn,因为它会更简单。
答案 1 :(得分:6)
cv_fit.toarray().sum(axis=0)
肯定会给出正确的结果,但是在稀疏矩阵上执行求和然后将其转换为数组要快得多:
np.asarray(cv_fit.sum(axis=0))
答案 2 :(得分:2)
我们将使用zip方法从单词列表及其计数列表中做出字典。
import pandas as pd
import numpy as np
from sklearn.feature_extraction.text import CountVectorizer
texts=["dog cat fish","dog cat cat","fish bird","bird"]
cv = CountVectorizer()
cv_fit=cv.fit_transform(texts)
word_list = cv.get_feature_names();
count_list = cv_fit.toarray().sum(axis=0)
print word_list
['鸟','猫','狗','鱼']
print count_list
[2 3 2 2]
print dict(zip(word_list,count_list))
{'鱼':2,'狗':2,'鸟':2,'猫':3}
答案 3 :(得分:2)
结合其他人的观点和我自己的观点:) 这是我给你的东西
from collections import Counter
from nltk.tokenize import RegexpTokenizer
from nltk.corpus import stopwords
from nltk.tokenize import word_tokenize
text='''Note that if you use RegexpTokenizer option, you lose
natural language features special to word_tokenize
like splitting apart contractions. You can naively
split on the regex \w+ without any need for the NLTK.
'''
# tokenize
raw = ' '.join(word_tokenize(text.lower()))
tokenizer = RegexpTokenizer(r'[A-Za-z]{2,}')
words = tokenizer.tokenize(raw)
# remove stopwords
stop_words = set(stopwords.words('english'))
words = [word for word in words if word not in stop_words]
# count word frequency, sort and return just 20
counter = Counter()
counter.update(words)
most_common = counter.most_common(20)
most_common
#输出 (全部)
[('note', 1), ('use', 1), ('regexptokenizer', 1), ('option', 1), ('lose', 1), ('natural', 1), ('language', 1), ('features', 1), ('special', 1), ('word', 1), ('tokenize', 1), ('like', 1), ('splitting', 1), ('apart', 1), ('contractions', 1), ('naively', 1), ('split', 1), ('regex', 1), ('without', 1), ('need', 1)]
就效率而言,可以做得比这更好,但是如果您不太担心它,那么这段代码是最好的。
答案 4 :(得分:0)
结合@YASH-GUPTA 的答案以获得可读结果和@pieterbons 的 RAM 效率,但需要进行调整并添加几个括号。 工作代码:
import numpy as np
from sklearn.feature_extraction.text import CountVectorizer
texts = ["dog cat fish", "dog cat cat", "fish bird", "bird"]
cv = CountVectorizer()
cv_fit = cv.fit_transform(texts)
word_list = cv.get_feature_names()
# Added [0] here to get a 1d-array for iteration by the zip function.
count_list = np.asarray(cv_fit.sum(axis=0))[0]
print(dict(zip(word_list, count_list)))
# Output: {'bird': 2, 'cat': 3, 'dog': 2, 'fish': 2}