我会用什么方法来找到f(x)= 5x(e ^ -mod(x))cos(x)+ 1的根?我正在尝试durand-kerner方法,但我不能让它工作。有没有更简单的方法呢?
这是使用durand-kerner方法的代码
#include <iostream>
#include <complex>
#include <math.h>
using namespace std;
typedef complex<double> dcmplx;
dcmplx f(dcmplx x)
{
// the function we are interested in
double a4 = 5;
double a0 = 1;
return (a4 * x * exp(-x) * cos(x) )+ a0;
}
int main()
{
dcmplx p(.9,2);
dcmplx q(.1, .5);
dcmplx r(.7,1);
dcmplx s(.3, .5);
dcmplx p0, q0, r0, s0;
int max_iterations = 100;
bool done = false;
int i=0;
while (i<max_iterations && done == false)
{
p0 = p;
q0 = q;
r0 = r;
s0 = s;
p = p0 - f(p0)/((p0-q)*(p0-r)*(p0-s));
q = q0 - f(q0)/((q0-p)*(q0-r)*(q0-s));
r = r0 - f(r0)/((r0-p)*(r0-q)*(r0-s0));
s = s0 - f(s0)/((s0-p)*(s0-q)*(s0-r));
// if convergence within small epsilon, declare done
if (abs(p-p0)<1e-5 && abs(q-q0)<1e-5 && abs(r-r0)<1e-5 && abs(s-s0)<1e-5)
done = true;
i++;
}
cout<<"roots are :\n";
cout << p << "\n";
cout << q << "\n";
cout << r << "\n";
cout << s << "\n";
cout << "number steps taken: "<< i << endl;
return 0;
}
答案 0 :(得分:0)
我不熟悉Durand-Kerner方法,但根据Wiki http://en.wikipedia.org/wiki/Durand%E2%80%93Kerner_method,它仅适用于求解多项式方程。请注意维基页面中的这一行:&#34;解释是针对四度方程式。它很容易推广到其他程度。&#34;
你的等式不是多项式。数值解可能不会收敛。
无论你的函数f返回错误的公式:return a4 * x * exp(-abs(x)) * cos(x) + a0;
(你忘记了复数模数,即abs)
你的迭代似乎也错了。他们应该读:
p = p0 - f(p0)/((p0-q0)*(p0-r0)*(p0-s0));
q = q0 - f(q0)/((q0-p)*(q0-r0)*(q0-s0));
r = r0 - f(r0)/((r0-p)*(r0-q)*(r0-s0));
s = s0 - f(s0)/((s0-p)*(s0-q)*(s0-r));
但即使你做出这些改变,解决方案也不会收敛 - 它将是振荡的。原因可能如上所述 - 该方法不适用于此类方程式。
答案 1 :(得分:0)
这种方法利用了二分法,并且你可以分别用数学来找到最高零的上界。
#include <iostream>
#include <iomanip>
#include <cmath>
#include <vector>
#include <utility>
#define MINX (-20.0f)
//MAXX Happens to be an upper bound for all zeroes of the function...
#define MAXX (1.0f)
#define NUM_INTERVALS (1000000)
#define NUM_BISECTION_ITERATIONS (30)
using namespace std;
double f(double x){
return 5 * x * exp(-x) * cos(x) + 1;
}
double bisection_method(double x0, double x1){
for (unsigned int i = 0; i < NUM_BISECTION_ITERATIONS; i++){
double midpoint = 0.5*x0 + 0.5*x1;
f(x0) * f(midpoint) < 0 ? x1 = midpoint : x0 = midpoint;
}
return 0.5*x0 + 0.5*x1;
}
int main(int argc, char** argv){
vector<pair<double, double>> relevant_intervals;
for (unsigned int i = 0; i < NUM_INTERVALS - 1; i++){
double x0 = MINX + (MAXX - MINX) / NUM_INTERVALS * (i);
double x1 = MINX + (MAXX - MINX) / NUM_INTERVALS * (i + 1);
if (f(x0) * f(x1) < 0)
relevant_intervals.push_back(make_pair(x0, x1));
}
cout << fixed << setprecision(20);
for (const auto & x : relevant_intervals){
cout << "One solution is approximately " << bisection_method(x.first, x.second) << endl;
}
}