postgres上相同的查询,不同的表,不同的执行时间

时间:2014-12-11 15:29:19

标签: sql database performance postgresql postgis

我对Postgres有性能问题。我有两个表具有相同的结构,相同的索引,我也在两个表上的id_coordinate索引上执行相同的CLUSTER。表格具有以下结构:

     Column     |   Type   |                  Modifiers                | Storage | Description
----------------+----------+-------------------------------------------+---------+-------------
 id_best_server | integer  | not null default nextval('seq'::regclass) | plain   |
 date           | date     | not null                                  | plain   |
 id_coordinate  | integer  | not null                                  | plain   |
 mnc            | smallint |                                           | plain   |
 id_cell        | integer  |                                           | plain   |
 rx_level       | real     |                                           | plain   |
 rx_quality     | real     |                                           | plain   |
 sqi            | real     |                                           | plain   |

Indexes:
    "history_best_server_until_2013_10_pkey" PRIMARY KEY, btree (id_best_server)
    "ix_history_best_server_until_2013_10_id_coordinate" btree (id_coordinate) CLUSTER
    "ix_history_best_server_until_2013_10_id_best_server" btree (id_best_server)

执行查询:

EXPLAIN ANALYZE SELECT DISTINCT ON (x, y) x, y, rx_level, rx_quality, date, mnc, id_cell
FROM
(
    SELECT X(co.location) AS x, Y(co.location) AS y, tems.rx_level, tems.rx_quality, date, mnc, id_cell
    FROM tems.history_best_server_until_2012_10 AS tems
    JOIN gis.coordinate AS co ON tems.id_coordinate = co.id_coordinate
        AND co.location && setsrid(makeBox2d(GeomFromText('POINT(101000 461500)', 2710),
                             GeomFromText('POINT(102400 463610)', 2710)
                             ), 2710)
    WHERE mnc = 41
) AS j1
ORDER BY x, y, date DESC

两个表的行数几乎相同(大约8M)。当我执行上面的查询时,在一个表上我得到这些结果:

"Unique  (cost=245742.87..245805.99 rows=8416 width=118) (actual time=3420.966..3425.584 rows=10009 loops=1)"
"  ->  Sort  (cost=245742.87..245763.91 rows=8416 width=118) (actual time=3420.963..3422.236 rows=10212 loops=1)"
"        Sort Key: (x(co.location)), (y(co.location)), tems.date"
"        Sort Method: quicksort  Memory: 1182kB"
"        ->  Hash Join  (cost=61069.15..245194.20 rows=8416 width=118) (actual time=191.365..3405.590 rows=10212 loops=1)"
"              Hash Cond: (tems.id_coordinate = co.id_coordinate)"
"              ->  Seq Scan on history_best_server_until_2012_10 tems  (cost=0.00..147705.35 rows=3226085 width=22) (actual time=0.009..1749.468 rows=3230507 loops=1)"
"                    Filter: (mnc = 41)"
"              ->  Hash  (cost=60697.73..60697.73 rows=29714 width=104) (actual time=46.828..46.828 rows=31806 loops=1)"
"                    Buckets: 4096  Batches: 1  Memory Usage: 1864kB"
"                    ->  Bitmap Heap Scan on coordinate co  (cost=937.22..60697.73 rows=29714 width=104) (actual time=14.975..35.561 rows=31806 loops=1)"
"                          Recheck Cond: (location && '0103000020960A000001000000050000000000000080A8F84000000000F02A1C410000000080A8F84000000000E84B1C41000000000000F94000000000E84B1C41000000000000F94000000000F02A1C410000000080A8F84000000000F02A1C41'::geome (...)"
"                          ->  Bitmap Index Scan on ix_coordinate_location  (cost=0.00..929.79 rows=29714 width=0) (actual time=14.593..14.593 rows=31806 loops=1)"
"                                Index Cond: (location && '0103000020960A000001000000050000000000000080A8F84000000000F02A1C410000000080A8F84000000000E84B1C41000000000000F94000000000E84B1C41000000000000F94000000000F02A1C410000000080A8F84000000000F02A1C41'::g (...)"
"Total runtime: 3426.635 ms"

在另一张桌子上,它看起来像这样:

"Unique  (cost=267070.35..267138.75 rows=9120 width=118) (actual time=172.333..177.232 rows=10051 loops=1)"
"  ->  Sort  (cost=267070.35..267093.15 rows=9120 width=118) (actual time=172.330..173.708 rows=10256 loops=1)"
"        Sort Key: (x(co.location)), (y(co.location)), tems.date"
"        Sort Method: quicksort  Memory: 1186kB"
"        ->  Nested Loop  (cost=937.22..266470.49 rows=9120 width=118) (actual time=14.876..156.322 rows=10256 loops=1)"
"              ->  Bitmap Heap Scan on coordinate co  (cost=937.22..60697.73 rows=29714 width=104) (actual time=14.788..29.510 rows=31806 loops=1)"
"                    Recheck Cond: (location && '0103000020960A000001000000050000000000000080A8F84000000000F02A1C410000000080A8F84000000000E84B1C41000000000000F94000000000E84B1C41000000000000F94000000000F02A1C410000000080A8F84000000000F02A1C41'::geometry)"
"                    ->  Bitmap Index Scan on ix_coordinate_location  (cost=0.00..929.79 rows=29714 width=0) (actual time=14.409..14.409 rows=31806 loops=1)"
"                          Index Cond: (location && '0103000020960A000001000000050000000000000080A8F84000000000F02A1C410000000080A8F84000000000E84B1C41000000000000F94000000000E84B1C41000000000000F94000000000F02A1C410000000080A8F84000000000F02A1C41'::geometr (...)"
"              ->  Index Scan using ix_history_best_server_until_2013_10_id_coordinate on history_best_server_until_2013_10 tems  (cost=0.00..6.91 rows=1 width=22) (actual time=0.003..0.003 rows=0 loops=31806)"
"                    Index Cond: (id_coordinate = co.id_coordinate)"
"                    Filter: (mnc = 41)"
"Total runtime: 178.280 ms"

总运行时间不同。

如果不使用“WHERE mnc = 41”,它们都可以快速工作。我不知道在第一种情况下导致序列扫描的原因。请注意,mnc只能有3个可能的值之一。每个值的频率在较快的桌子上约为41%,39%,20%,在较慢的桌子上为43%,41%,16%。

增加: 这是快速表的统计信息。

             tablename             |    attname     | n_distinct | correlation | most_common_freqs
-----------------------------------+----------------+------------+-------------+-------------------
 history_best_server_until_2013_10 | id_best_server |         -1 |           1 |
 history_best_server_until_2013_10 | date           |       1122 |   -0.206991 | many values
 history_best_server_until_2013_10 | id_coordinate  |  -0.373645 |           1 | many values
 history_best_server_until_2013_10 | mnc            |          3 |     0.30477 | {0.411783,0.386967,0.20125}
 history_best_server_until_2013_10 | id_cell        |       5811 |  -0.0759416 | many values
 history_best_server_until_2013_10 | rx_level       |      14961 |   -0.122292 | many values
 history_best_server_until_2013_10 | rx_quality     |         16 |    0.360472 | many values
 history_best_server_until_2013_10 | sqi            |       5552 |    0.212023 | many values
(8 rows)

这个是慢速的:

             tablename             |    attname     | n_distinct | correlation | most_common_freqs
-----------------------------------+----------------+------------+-------------+-------------------
 history_best_server_until_2012_10 | id_best_server |         -1 |           1 |
 history_best_server_until_2012_10 | date           |        954 |   -0.205897 | many values
 history_best_server_until_2012_10 | id_coordinate  |  -0.421911 |           1 | many values
 history_best_server_until_2012_10 | mnc            |          3 |    0.314319 | {0.4349,0.402433,0.162667}
 history_best_server_until_2012_10 | id_cell        |       5617 |  -0.0715787 | many values
 history_best_server_until_2012_10 | rx_level       |      14129 |   -0.115288 | many values
 history_best_server_until_2012_10 | rx_quality     |         22 |    0.368943 | many values
 history_best_server_until_2012_10 | sqi            |       5320 |    0.226596 | many values

gis.coordinate的表定义

                                                  Table "gis.coordinate"
    Column     |   Type   |                               Modifiers                                | Storage | Description
---------------+----------+------------------------------------------------------------------------+---------+-------------
 id_coordinate | integer  | not null default nextval('gis.coordinate_id_coordinate_seq'::regclass) | plain   |
 location      | geometry |                                                                        | main    |

Indexes:
    "coordinate_pkey" PRIMARY KEY, btree (id_coordinate)
    "ix_pk_coordinate" UNIQUE, btree (id_coordinate) CLUSTER
    "ix_coordinate_location" gist (location)

Check constraints:
    "enforce_dims_location" CHECK (ndims(location) = 2)
    "enforce_geotype_location" CHECK (geometrytype(location) = 'POINT'::text OR location IS NULL)
    "enforce_srid_location" CHECK (srid(location) = 2710)

2 个答案:

答案 0 :(得分:2)

这不是相同的数据,因此除非统计数据(mnc = 41等等的行数,值在整个表中的分布情况等)相同,否则期望相同的计划是不合理的。< / p>

价值很可能是频繁的,并且在一个案例中遍布整个地方,并且在另一个案例中分组。在第一种情况下,seq扫描行通常会更快;另一方面,索引扫描通常会更快。

答案 1 :(得分:1)

从表coordinate获取行的计划在两种情况下都是相同的。

在表2012_10上较慢的查询中,Postgres直接在seq扫描中读取表中的行,并将散列连接到coordinate的结果。

在表2013_10上的快速查询中,Postgres从id_coordinate上的索引收集行,按mnc过滤结果并运行嵌套循环,其结果来自coordinate

显然Postgres希望索引支付第二个查询。对于快速案例,41%mnc = 41略微更具选择性,对于慢速案例则为43%。通常不足以解释差异,但引爆点在某处。显然,切换到seqscan的决定很糟糕,所以我猜你应该调整你的成本设置。见下文。另外,我会使用mnc的值较低的值进行测试。

许多细节会影响决策和结果:

  • 价值的频率和分布。
  • 来自死元组的表格膨胀(您使用CLUSTER删除了,因此我们可以将其排除在外)。
  • 缓存大小以及索引和/或表是否已缓存(因为之前从此会话或其他会话调用同一个表)。在测试中多次运行每个查询以平衡比赛场地。
  • Statistics Used by the Planner,由ANALYZE收集,以对情况进行实际估算。
  • Planner Cost Constants.如果您的统计信息不是问题,那么您可能应该在此处调整设置。
  • 配置设置,尤其是shared_bufferswork_memeffective_cache_size

CLUSTER

Per documentation:

  

因为计划程序记录有关表的排序的统计信息,   建议在新群集表上运行ANALYZE。   否则,规划人员可能会对查询计划做出糟糕的选择。

大胆强调我的。 可以成为(部分)答案。

CLUSTER上的id_coordinate也无济于事。为了查询的目的,似乎没有改进行的局部性。我建议你创建一个额外的多列索引

CREATE INDEX ix_history_?? ON history_?? (mnc, id_coordinate);

并且

CLUSTER history_?? USING ix_history_??;

这应该可以帮助更多 - 并且索引也应该更快用于组合索引扫描而不是过滤器步骤。

Postgres当前版本的更好索引

没有解释这种现象,但是你的Postgres版本9.1.13正在变老并且是一个限制因素。自您的版本以来的许多改进特别是对于大数据和索引。

使用pg 9.2+,您可以从{strong>仅索引扫描中获益:在id_coordinate的GiST索引中包含gis.coordinate,使其成为多列索引:

CREATE INDEX ix_coordinate_location ON gis.coordinate (id_coordinate, location)

您需要额外的模块btree_gist。详细说明:

更简单的查询

无论哪种方式,您都可以简化查询:

SELECT DISTINCT ON (1, 2)
       X(co.location) AS x
     , Y(co.location) AS y
     , tems.rx_level, tems.rx_quality, date, mnc, id_cell
FROM   tems.history_best_server_until_2012_10 AS tems
JOIN   gis.coordinate AS co USING (id_coordinate)
WHERE  co.location
    && setsrid(makeBox2d(GeomFromText('POINT(101000 461500)', 2710)
                       , GeomFromText('POINT(102400 463610)', 2710)), 2710)
AND    mnc = 41
ORDER  BY 1, 2, date DESC;

更短,没有子查询,我不会对性能产生太大影响。