R中SVM的一类分类

时间:2014-12-09 09:32:43

标签: r classification svm libsvm

我使用R中的包e1071来构建一个类SVM模型。我不知道该怎么做,我也没有在互联网上找到任何例子。

有人可以给出一个示例代码来表征,例如,类" setosa"在" iris"具有一类分类模型的数据集,然后测试同一数据集中的所有示例(为了检查哪些示例属于" setosa"类的特征以及哪些示例不是)?

3 个答案:

答案 0 :(得分:19)

我认为这就是你想要的:

library(e1071)
data(iris)
df <- iris

df <- subset(df ,  Species=='setosa')  #choose only one of the classes

x <- subset(df, select = -Species) #make x variables
y <- df$Species #make y variable(dependent)
model <- svm(x, y,type='one-classification') #train an one-classification model 


print(model)
summary(model) #print summary

# test on the whole set
pred <- predict(model, subset(iris, select=-Species)) #create predictions

输出:

-Summary:

> summary(model)

Call:
svm.default(x = x, y = y, type = "one-classification")


Parameters:
   SVM-Type:  one-classification 
 SVM-Kernel:  radial 
      gamma:  0.25 
         nu:  0.5 

Number of Support Vectors:  27




Number of Classes: 1

-Predictions(由于视觉原因,此处仅显示了一些预测(其中Species =='setosa'):

> pred
    1     2     3     4     5     6     7     8     9    10    11    12    13    14    15    16    17    18    19    20    21    22 
 TRUE  TRUE  TRUE  TRUE  TRUE FALSE FALSE  TRUE FALSE  TRUE  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE  TRUE FALSE  TRUE 
   23    24    25    26    27    28    29    30    31    32    33    34    35    36    37    38    39    40    41    42    43    44 
FALSE FALSE FALSE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE  TRUE  TRUE FALSE FALSE FALSE 
   45    46    47    48    49    50 
FALSE  TRUE  TRUE  TRUE  TRUE  TRUE 

答案 1 :(得分:4)

精确准确的代码:train = 78.125 test = 91.53:

&#13;
&#13;
library(e1071)
library(caret)
library(NLP)
library(tm)

data(iris)

iris$SpeciesClass[iris$Species=="versicolor"] <- "TRUE"
iris$SpeciesClass[iris$Species!="versicolor"] <- "FALSE"
trainPositive<-subset(iris,SpeciesClass=="TRUE")
testnegative<-subset(iris,SpeciesClass=="FALSE")
inTrain<-createDataPartition(1:nrow(trainPositive),p=0.6,list=FALSE)

trainpredictors<-trainPositive[inTrain,1:4]
trainLabels<-trainPositive[inTrain,6]

testPositive<-trainPositive[-inTrain,]
testPosNeg<-rbind(testPositive,testnegative)

testpredictors<-testPosNeg[,1:4]
testLabels<-testPosNeg[,6]

svm.model<-svm(trainpredictors,y=NULL,
               type='one-classification',
               nu=0.10,
               scale=TRUE,
               kernel="radial")

svm.predtrain<-predict(svm.model,trainpredictors)
svm.predtest<-predict(svm.model,testpredictors)

# confusionMatrixTable<-table(Predicted=svm.pred,Reference=testLabels)
# confusionMatrix(confusionMatrixTable,positive='TRUE')

confTrain<-table(Predicted=svm.predtrain,Reference=trainLabels)
confTest<-table(Predicted=svm.predtest,Reference=testLabels)

confusionMatrix(confTest,positive='TRUE')

print(confTrain)
print(confTest)
&#13;
&#13;
&#13;

答案 2 :(得分:0)

library(e1071)
library(caret)
library(NLP)
library(tm)

data(iris)

iris$SpeciesClass[iris$Species=="versicolor"] <- "TRUE"
iris$SpeciesClass[iris$Species!="versicolor"] <- "FALSE"
trainPositive<-subset(iris,SpeciesClass=="TRUE")
testnegative<-subset(iris,SpeciesClass=="FALSE")
inTrain<-createDataPartition(1:nrow(trainPositive),p=0.6,list=FALSE)

trainpredictors<-trainPositive[inTrain,1:4]
trainLabels<-trainPositive[inTrain,6]

testPositive<-trainPositive[-inTrain,]
testPosNeg<-rbind(testPositive,testnegative)

testpredictors<-testPosNeg[,1:4]
testLabels<-testPosNeg[,6]

svm.model<-svm(trainpredictors,y=NULL,
               type='one-classification',
               nu=0.10,
               scale=TRUE,
               kernel="radial")

svm.predtrain<-predict(svm.model,trainpredictors)
svm.predtest<-predict(svm.model,testpredictors)

# confusionMatrixTable<-table(Predicted=svm.pred,Reference=testLabels)
# confusionMatrix(confusionMatrixTable,positive='TRUE')

confTrain<-table(Predicted=svm.predtrain,Reference=trainLabels)
confTest<-table(Predicted=svm.predtest,Reference=testLabels)

confusionMatrix(confTest,positive='TRUE')

print(confTrain)
print(confTest)