如果该颜色的像素为蓝色,我想将元素更改为[0,0,0]。下面的代码有效,但速度极慢:
for row in range(w):
for col in range(h):
if np.array_equal(image[row][col], [255,0,0]):
image[row][col] = (0,0,0)
else:
image[row][col] = (255,255,255)
我知道np.where适用于单维数组,但是如何使用该函数替换3维对象的东西呢?
答案 0 :(得分:3)
自从您提出numpy.where
后,您可以使用nupmy.where
进行操作:
import numpy as np
# Make an example image
image = np.random.randint(0, 255, (10, 10, 3))
image[2, 2, :] = [255, 0, 0]
# Define the color you're looking for
pattern = np.array([255, 0, 0])
# Make a mask to use with where
mask = (image == pattern).all(axis=2)
newshape = mask.shape + (1,)
mask = mask.reshape(newshape)
# Finish it off
image = np.where(mask, [0, 0, 0], [255, 255, 255])
重塑正在那里,因此numpy将适用broadcasting,more here also。
答案 1 :(得分:0)
您可以做的最简单的事情就是将要设置的元素乘以零的零数组。三维数组的此数组属性的示例如下所示。
x = array([ [ [ 1,2,3 ] , [ 2 , 3 , 4 ] ] , [ [ 1, 2, 3, ] , [ 2 , 3 , 4 ] ] , [ [ 1,2,3 ] , [ 2 , 3 , 4 ] ] , [ [ 1, 2, 3, ] , [ 2 , 3 , 4 ] ] ])
print x
if 1:
x[0] = x[0] * 0
print x
这将产生两个打印输出:
[[[1 2 3] [2 3 4]]
[[1 2 3] [2 3 4]] ......
和
[[[0 0 0] [0 0 0]]
[[1 2 3] [2 3 4]] ......
此方法适用于示例中的image [row]和image [row] [column]。您重新编写的示例如下所示:
for row in range(w):
for col in range(h):
if np.array_equal(image[row][col], [255,0,0]):
image[row][col] = 0
else:
image[row][col] = 255