我试图在此
中提取子图像二进制阈值,250
轮廓
正如你所看到的,它并不是完美的,它正在拾取一些不是方形的东西。 这是代码:
Mat src; Mat src_gray;
int thresh = 250;
int max_thresh = 255;
RNG rng(12345);
/// Function header
void thresh_callback(int, void*);
/** @function main */
int main(int argc, char** argv)
{
/// Load source image and convert it to gray
src = imread("Media/RoadSignRecognitionUnknownSigns/RoadSignsComposite1.JPG", 1);
/// Convert image to gray and blur it
cvtColor(src, src_gray, CV_BGR2GRAY);
blur(src_gray, src_gray, Size(3, 3));
/// Create Window
char* source_window = "Source";
namedWindow(source_window, CV_WINDOW_AUTOSIZE);
imshow(source_window, src);
createTrackbar(" Threshold:", "Source", &thresh, max_thresh, thresh_callback);
thresh_callback(0, 0);
waitKey(0);
return(0);
}
/** @function thresh_callback */
void thresh_callback(int, void*)
{
Mat threshold_output;
vector<vector<Point> > contours;
vector<Vec4i> hierarchy;
/// Detect edges using Threshold
threshold(src_gray, threshold_output, thresh, 255, THRESH_BINARY);
imshow("threshold_output", threshold_output);
/// Find contours
findContours(threshold_output, contours, hierarchy, CV_RETR_TREE, CV_CHAIN_APPROX_SIMPLE, Point(0, 0));
/// Approximate contours to polygons + get bounding rects and circles
vector<vector<Point> > contours_poly(contours.size());
vector<Rect> boundRect(contours.size());
vector<Point2f>center(contours.size());
vector<float>radius(contours.size());
for (int i = 0; i < contours.size(); i++)
{
approxPolyDP(Mat(contours[i]), contours_poly[i], 3, true);
boundRect[i] = boundingRect(Mat(contours_poly[i]));
minEnclosingCircle((Mat)contours_poly[i], center[i], radius[i]);
}
/// Draw polygonal contour + bonding rects + circles
Mat drawing = Mat::zeros(threshold_output.size(), CV_8UC3);
for (int i = 0; i< contours.size(); i++)
{
Scalar color = Scalar(rng.uniform(0, 255), rng.uniform(0, 255), rng.uniform(0, 255));
drawContours(drawing, contours_poly, i, color, 1, 8, vector<Vec4i>(), 0, Point());
rectangle(drawing, boundRect[i].tl(), boundRect[i].br(), color, 2, 8, 0);
circle( drawing, center[i], (int)radius[i], color, 2, 8, 0 );
}
/// Show in a window
namedWindow("Contours", CV_WINDOW_AUTOSIZE);
imshow("Contours", drawing);
for (int i = 0; i < boundRect.size(); i++)
{
Mat patch = src(boundRect[i]);
//boundRect[i]
//Do whatever you want with the patch (imshow, imwrite,...)
imshow("Patch", patch);
}
for (int i = 0; i < boundRect.size(); i++){
//int n = 1;// Here you will need to define n differently (for instance pick the largest contour instead of the first one)
cv::Rect rect(boundRect[i]);
cv::Mat miniMat;
miniMat = src(rect);
imshow(""+to_string(i), miniMat);
}
}
如何更好地进行形状检测?
答案 0 :(得分:1)
如果您的图像与示例中的图像不相交,则可以简单地计算二进制阈值处理中每个连接组件的2d边界框。如果他们几乎不相交,那么你可以先进行侵蚀。
答案 1 :(得分:1)
以下是从图像中检测签名的程序: