假设我有一个数字A的向量,例如:A=[1 3 5 3 9 6]
(A' s长度> = 2)和整数X=6
。需要查找满足此条件的向量中存在(A[i],A[j])
的{{1}}对i<j
:A[i]+A[j]=X
。打印对数。
不允许使用for
/ while
。仅允许ceil
,floor
,mod
,repmat
,reshape
,size
,length
,transpose
, sort
,isempty
,all
,any
,find
,sum
,max
,min
。
答案 0 :(得分:4)
使用repmat
,length
和sum
-
integer1 = 6; %// One of the paramters
A_ind = 1:length(A) %// Get the indices array
%// Expand A_ind into rows and A_ind' into columns, to form a meshgrid structure
A_ind_mat1 = repmat(A_ind,[length(A) 1])
A_ind_mat2 = repmat(A_ind',[1 length(A)]) %//'
%// Expand A into rows and A' into columns, to form a meshgrid structure
A_mat1 = repmat(A,[length(A) 1])
A_mat2 = repmat(A',[1 length(A)]) %//'
%// Form the binary matrix of -> (A[i],A[j]) where i<j
cond1 = A_ind_mat1 < A_ind_mat2
%// Use the binary matrix as a logical mask to select elements from the two
%// matrices and see which element pairs satisfy -> A[i]+A[j]=X and get a
%// count of those pairs with SUM
pairs_count = sum((A_mat1(cond1) + A_mat2(cond1))==integer1)
代码运行的输出使其更清晰 -
A =
1 3 5 3 9 6
A_ind =
1 2 3 4 5 6
A_ind_mat1 =
1 2 3 4 5 6
1 2 3 4 5 6
1 2 3 4 5 6
1 2 3 4 5 6
1 2 3 4 5 6
1 2 3 4 5 6
A_ind_mat2 =
1 1 1 1 1 1
2 2 2 2 2 2
3 3 3 3 3 3
4 4 4 4 4 4
5 5 5 5 5 5
6 6 6 6 6 6
A_mat1 =
1 3 5 3 9 6
1 3 5 3 9 6
1 3 5 3 9 6
1 3 5 3 9 6
1 3 5 3 9 6
1 3 5 3 9 6
A_mat2 =
1 1 1 1 1 1
3 3 3 3 3 3
5 5 5 5 5 5
3 3 3 3 3 3
9 9 9 9 9 9
6 6 6 6 6 6
cond1 =
0 0 0 0 0 0
1 0 0 0 0 0
1 1 0 0 0 0
1 1 1 0 0 0
1 1 1 1 0 0
1 1 1 1 1 0
pairs_count =
2
更多解释 -
采取更多措施来澄清pairs_count
必须在2
处的原因 -
将A_mat1
和A_mat2
中的所有值设置为不满足less than
条件的零
>> A_mat1(~cond1)=0
A_mat1 =
0 0 0 0 0 0
1 0 0 0 0 0
1 3 0 0 0 0
1 3 5 0 0 0
1 3 5 3 0 0
1 3 5 3 9 0
>> A_mat2(~cond1)=0
A_mat2 =
0 0 0 0 0 0
3 0 0 0 0 0
5 5 0 0 0 0
3 3 3 0 0 0
9 9 9 9 0 0
6 6 6 6 6 0
现在,添加A_mat1
和A_mat2
,看看你有多少6
-
>> A_mat1 + A_mat2
ans =
0 0 0 0 0 0
4 0 0 0 0 0
6 8 0 0 0 0
4 6 8 0 0 0
10 12 14 12 0 0
7 9 11 9 15 0
正如您所看到的,有两个6
&#39},因此我们的结果已经过验证。