我通过dbscan skelearn
制作了以下群集
我的数据是一个numpy数组:
array([[-0.22725194, -0.68548221],
[ 0.01525107, -0.98825191],
[-0.29117618, -0.69614647],
...,
[ 0.62125361, -0.79422623],
[ 0.59627969, -0.82673572],
[ 0.58919524, -1.04003462]])
我想将两个新集群作为变量添加到我的数据中。我使用的代码是:
from sklearn.cluster import DBSCAN
data3 = np.array(data3)
dbscan = DBSCAN(random_state=111, eps=0.3)
dbscan.fit(data3)
# visualization
from sklearn.decomposition import PCA
pca = PCA(n_components=2).fit(data3)
pca_2d = pca.transform(data3)
for i in range(0, pca_2d.shape[0]):
if dbscan.labels_[i] == 0:
c1 = plt.scatter(pca_2d[i,0],pca_2d[i,1],c='r',
marker='+')
elif dbscan.labels_[i] == 1:
c2 = plt.scatter(pca_2d[i,0],pca_2d[i,1],c='g',
marker='o')
elif dbscan.labels_[i] == -1:
c3 = plt.scatter(pca_2d[i,0],pca_2d[i,1],c='b',
marker='*')
plt.legend([c1, c2, c3], ['Cluster 1', 'Cluster 2',
'Noise'])
plt.title('DBSCAN finds 2 clusters and noise')
plt.show()
如何将它们保存为变量?是否有评估这些集群质量的功能,如Silhoutte Coefficient?
答案 0 :(得分:0)
您已将它们放在变量中:dbscan.labels_
,不是吗?
并不是说您应该能够执行pca_2d[dbscan.labels_==1,:]
之类的操作,以避免一次只能绘制一个点。
基于密度的聚类评估并不容易。我只知道一个单一的措施,甚至声称它可以评估基于密度的聚类(虽然我没有使用它,所以我不能保证它有效。)
剪影等不适用。他们假设凸集群,并且在经典的Jain玩具问题上失败了。
Moulavi,D.,Jaskowiak,P。A.,Campello,R。J. G. B.,Zimek,A。,& Sander,J。(2014)。
基于密度的聚类验证。
在第14届SIAM国际数据挖掘会议(SDM)会议记录中,宾夕法尼亚州费城。