CUDA:如何在cuFFT中使用浮动音频数据?

时间:2014-12-05 21:06:21

标签: c audio cuda fft

我对在cuFFT中转换音频信号感兴趣,以获得创建频谱图所需的数据。在转换之前尝试从float转换为cufftReal时,我似乎丢失了所有音频数据。另外,我不认为我的实际方法对于获得正确的结果是正确的。以下是我到目前为止的情况:

void process_data(float *h_in_data_dynamic, sf_count_t samples, int channels) {
int nSamples = (int)samples;
int DATASIZE = 512;
int batch = nSamples / DATASIZE;

cufftHandle plan;

//this makes the data become all 0's.
cufftReal *d_in_data;
cudaMalloc((void**)&d_in_data, sizeof(cufftReal) * nSamples);
cudaMemcpy(d_in_data, (cufftReal*)h_in_data_dynamic, sizeof(cufftReal) * nSamples, cudaMemcpyHostToDevice);


cufftComplex *data;
cudaMalloc((void**)&data, sizeof(cufftComplex) * nSamples);


cufftComplex *hostOutputData = (cufftComplex*)malloc((DATASIZE / 2 + 1) * batch * sizeof(cufftComplex));

if (cudaGetLastError() != cudaSuccess) {
    fprintf(stderr, "Cuda error: Failed to allocate\n");
    return;
}

int rank = 1;                           // --- 1D FFTs
int n[] = { DATASIZE };                 // --- Size of the Fourier transform
int istride = 1, ostride = 1;           // --- Distance between two successive input/output elements
int idist = DATASIZE, odist = (DATASIZE / 2) + 1; // --- Distance between batches
int inembed[] = { 0 };                  // --- Input size with pitch (ignored for 1D transforms)
int onembed[] = { 0 };                  // --- Output size with pitch (ignored for 1D transforms)

cufftPlanMany(&plan, rank, n,
              inembed, istride, idist,
              onembed, ostride, odist, CUFFT_R2C, batch);

/* Use the CUFFT plan to transform the signal in place. */
if (cufftExecR2C(plan, d_in_data, data) != CUFFT_SUCCESS) {
    fprintf(stderr, "CUFFT error: ExecC2C Forward failed");
    return;
}

cudaMemcpy(hostOutputData, data, (DATASIZE / 2) + 1 * batch * sizeof(cufftComplex), cudaMemcpyDeviceToHost);

for (int i=0; i < batch; i++)
    for (int j=0; j < (DATASIZE / 2 + 1); j++)
        printf("%i %i %f %f\n", i, j, hostOutputData[i*(DATASIZE / 2 + 1) + j].x, hostOutputData[i*(DATASIZE / 2 + 1) + j].y);

cufftDestroy(plan);
cudaFree(data);
cudaFree(d_in_data);
}

1 个答案:

答案 0 :(得分:2)

我可以看到一些问题。

  1. 您应该正确缩进代码以提高可读性。
  2. 如果您遇到问题,请进行适当的错误检查。这是一个挑剔,但你没有检查调用cufftPlanMany的返回代码。您还没有对上次cudaMemcpy来电进行正确的错误检查。
  3. 这两个分配的大小应该匹配。他们没有:

    cudaMalloc((void**)&data, sizeof(cufftComplex) * nSamples);
    
    cufftComplex *hostOutputData = (cufftComplex*)malloc((DATASIZE / 2 + 1) * batch * sizeof(cufftComplex));
    

    上面第二个分配的大小是正确的,并且第一个分配的大小应该重复。

  4. 你在这一行中有一个基本错字。你应该在我指明的地方加上括号:

    cudaMemcpy(hostOutputData, data, (DATASIZE / 2) + 1 * batch * sizeof(cufftComplex), cudaMemcpyDeviceToHost);
                                    ^                  ^
    
  5. SO expects当您寻求调试帮助时,您提供了MCVE。其他人不负责为您创建main例程并合成数据,并猜测您包含的标题和sf_count_t是什么,以及您要完成的内容一般

  6. 您的例行程序未考虑channels。同样我也没有,因为这不是问题。但是,根据数据布局,使用多通道数据可能会对代码产生影响。

  7. 当我解决上述问题时,我会得到一些对我有用的东西。

    $ cat t621.cu
    #include <cufft.h>
    #include <math.h>
    #include <stdio.h>
    
    #define FFTSIZE 512
    #define DEBUG 0
    
    typedef size_t sf_count_t;
    
    void process_data(float *h_in_data_dynamic, sf_count_t samples, int channels) {
      int nSamples = (int)samples;
      int DATASIZE = FFTSIZE;
      int batch = nSamples / DATASIZE;
    
      cufftHandle plan;
    
      cufftReal *d_in_data;
      cudaMalloc((void**)&d_in_data, sizeof(cufftReal) * nSamples);
      cudaMemcpy(d_in_data, (cufftReal*)h_in_data_dynamic, sizeof(cufftReal) * nSamples, cudaMemcpyHostToDevice);
    
      cufftComplex *data;
      cudaMalloc((void**)&data, sizeof(cufftComplex) * batch * (DATASIZE/2 + 1));
    
      cufftComplex *hostOutputData = (cufftComplex*)malloc((DATASIZE / 2 + 1) * batch * sizeof(cufftComplex));
    
      if (cudaGetLastError() != cudaSuccess) {
        fprintf(stderr, "Cuda error: Failed to allocate\n");
        return;
      }
    
      int rank = 1;                           // --- 1D FFTs
      int n[] = { DATASIZE };                 // --- Size of the Fourier transform
      int istride = 1, ostride = 1;           // --- Distance between two successive input/output elements
      int idist = DATASIZE, odist = (DATASIZE / 2) + 1; // --- Distance between batches
      int inembed[] = { 0 };                  // --- Input size with pitch (ignored for 1D transforms)
      int onembed[] = { 0 };                  // --- Output size with pitch (ignored for 1D transforms)
    
      if(cufftPlanMany(&plan, rank, n,
                  inembed, istride, idist,
                  onembed, ostride, odist, CUFFT_R2C, batch) != CUFFT_SUCCESS){
        fprintf(stderr, "CUFFT error: Plan failed");
        return;
      }
    
    /* Use the CUFFT plan to transform the signal in place. */
      if (cufftExecR2C(plan, d_in_data, data) != CUFFT_SUCCESS) {
        fprintf(stderr, "CUFFT error: ExecR2C Forward failed");
        return;
      }
    
      cudaMemcpy(hostOutputData, data, ((DATASIZE / 2) + 1) * batch * sizeof(cufftComplex), cudaMemcpyDeviceToHost);
      if (cudaGetLastError() != cudaSuccess) {
        fprintf(stderr, "Cuda error: Failed results copy\n");
        return;
      }
    
      float *spectrum = (float *)malloc((DATASIZE/2)*sizeof(float));
      for (int j = 0; j < (DATASIZE/2); j++) spectrum[j] = 0.0f;
      for (int i=0; i < batch; i++)
        for (int j=0; j < (DATASIZE / 2 + 1); j++){
    #if DEBUG
            printf("%i %i %f %f\n", i, j, hostOutputData[i*(DATASIZE / 2 + 1) + j].x, hostOutputData[i*(DATASIZE / 2 + 1) + j].y);
    #endif
            // compute spectral magnitude
            // note that cufft induces a scale factor of FFTSIZE
            if (j < (DATASIZE/2)) spectrum[j] += sqrt(pow(hostOutputData[i*(DATASIZE/2 +1) +j].x, 2) + pow(hostOutputData[i*(DATASIZE/2 +1) +j].y, 2))/(float)(batch*DATASIZE);
            }
      //assumes Fs is half of FFTSIZE, or we could pass Fs separately
      printf("Spectrum\n Hz:   Magnitude:\n");
      for (int j = 0; j < (DATASIZE/2); j++) printf("%.3f %.3f\n", j/2.0f, spectrum[j]);
    
      cufftDestroy(plan);
      cudaFree(data);
      cudaFree(d_in_data);
    }
    
    int main(){
    
      const int nsets = 20;
      const float sampling_rate = FFTSIZE/2;
      const float amplitude = 1.0;
      const float fc1 = 6.0;
      const float fc2 = 4.5;
      float *my_data;
    
      my_data = (float *)malloc(nsets*FFTSIZE*sizeof(float));
      //generate synthetic data that is a mix of 2 sine waves at fc1 and fc2 Hz
      for (int i = 0; i < nsets*FFTSIZE; i++)
        my_data[i] = amplitude*sin(fc1*(6.283/sampling_rate)*i)
                   + amplitude*sin(fc2*(6.283/sampling_rate)*i);
    
      process_data(my_data, nsets*FFTSIZE, 1);
      return 0;
    }
    
    
    $ nvcc -arch=sm_20 -o t621 t621.cu -lcufft
    $ ./t621
     Hz:   Magnitude:
    0.000 0.000
    0.500 0.000
    1.000 0.000
    1.500 0.000
    2.000 0.000
    2.500 0.000
    3.000 0.000
    3.500 0.000
    4.000 0.000
    4.500 0.500
    5.000 0.000
    5.500 0.000
    6.000 0.500
    6.500 0.000
    7.000 0.000
    7.500 0.000
    8.000 0.000
    8.500 0.000
    9.000 0.000
    9.500 0.000
    10.000 0.000
    10.500 0.000
    11.000 0.000
    11.500 0.000
    12.000 0.000
    12.500 0.000
    13.000 0.000
    13.500 0.000
    14.000 0.000
    14.500 0.000
    15.000 0.000
    15.500 0.000
    16.000 0.000
    16.500 0.000
    17.000 0.000
    17.500 0.000
    18.000 0.000
    18.500 0.000
    19.000 0.000
    19.500 0.000
    20.000 0.000
    20.500 0.000
    21.000 0.000
    21.500 0.000
    22.000 0.000
    22.500 0.000
    23.000 0.000
    23.500 0.000
    24.000 0.000
    24.500 0.000
    25.000 0.000
    25.500 0.000
    26.000 0.000
    26.500 0.000
    27.000 0.000
    27.500 0.000
    28.000 0.000
    28.500 0.000
    29.000 0.000
    29.500 0.000
    30.000 0.000
    30.500 0.000
    31.000 0.000
    31.500 0.000
    32.000 0.000
    32.500 0.000
    33.000 0.000
    33.500 0.000
    34.000 0.000
    34.500 0.000
    35.000 0.000
    35.500 0.000
    36.000 0.000
    36.500 0.000
    37.000 0.000
    37.500 0.000
    38.000 0.000
    38.500 0.000
    39.000 0.000
    39.500 0.000
    40.000 0.000
    40.500 0.000
    41.000 0.000
    41.500 0.000
    42.000 0.000
    42.500 0.000
    43.000 0.000
    43.500 0.000
    44.000 0.000
    44.500 0.000
    45.000 0.000
    45.500 0.000
    46.000 0.000
    46.500 0.000
    47.000 0.000
    47.500 0.000
    48.000 0.000
    48.500 0.000
    49.000 0.000
    49.500 0.000
    50.000 0.000
    50.500 0.000
    51.000 0.000
    51.500 0.000
    52.000 0.000
    52.500 0.000
    53.000 0.000
    53.500 0.000
    54.000 0.000
    54.500 0.000
    55.000 0.000
    55.500 0.000
    56.000 0.000
    56.500 0.000
    57.000 0.000
    57.500 0.000
    58.000 0.000
    58.500 0.000
    59.000 0.000
    59.500 0.000
    60.000 0.000
    60.500 0.000
    61.000 0.000
    61.500 0.000
    62.000 0.000
    62.500 0.000
    63.000 0.000
    63.500 0.000
    64.000 0.000
    64.500 0.000
    65.000 0.000
    65.500 0.000
    66.000 0.000
    66.500 0.000
    67.000 0.000
    67.500 0.000
    68.000 0.000
    68.500 0.000
    69.000 0.000
    69.500 0.000
    70.000 0.000
    70.500 0.000
    71.000 0.000
    71.500 0.000
    72.000 0.000
    72.500 0.000
    73.000 0.000
    73.500 0.000
    74.000 0.000
    74.500 0.000
    75.000 0.000
    75.500 0.000
    76.000 0.000
    76.500 0.000
    77.000 0.000
    77.500 0.000
    78.000 0.000
    78.500 0.000
    79.000 0.000
    79.500 0.000
    80.000 0.000
    80.500 0.000
    81.000 0.000
    81.500 0.000
    82.000 0.000
    82.500 0.000
    83.000 0.000
    83.500 0.000
    84.000 0.000
    84.500 0.000
    85.000 0.000
    85.500 0.000
    86.000 0.000
    86.500 0.000
    87.000 0.000
    87.500 0.000
    88.000 0.000
    88.500 0.000
    89.000 0.000
    89.500 0.000
    90.000 0.000
    90.500 0.000
    91.000 0.000
    91.500 0.000
    92.000 0.000
    92.500 0.000
    93.000 0.000
    93.500 0.000
    94.000 0.000
    94.500 0.000
    95.000 0.000
    95.500 0.000
    96.000 0.000
    96.500 0.000
    97.000 0.000
    97.500 0.000
    98.000 0.000
    98.500 0.000
    99.000 0.000
    99.500 0.000
    100.000 0.000
    100.500 0.000
    101.000 0.000
    101.500 0.000
    102.000 0.000
    102.500 0.000
    103.000 0.000
    103.500 0.000
    104.000 0.000
    104.500 0.000
    105.000 0.000
    105.500 0.000
    106.000 0.000
    106.500 0.000
    107.000 0.000
    107.500 0.000
    108.000 0.000
    108.500 0.000
    109.000 0.000
    109.500 0.000
    110.000 0.000
    110.500 0.000
    111.000 0.000
    111.500 0.000
    112.000 0.000
    112.500 0.000
    113.000 0.000
    113.500 0.000
    114.000 0.000
    114.500 0.000
    115.000 0.000
    115.500 0.000
    116.000 0.000
    116.500 0.000
    117.000 0.000
    117.500 0.000
    118.000 0.000
    118.500 0.000
    119.000 0.000
    119.500 0.000
    120.000 0.000
    120.500 0.000
    121.000 0.000
    121.500 0.000
    122.000 0.000
    122.500 0.000
    123.000 0.000
    123.500 0.000
    124.000 0.000
    124.500 0.000
    125.000 0.000
    125.500 0.000
    126.000 0.000
    126.500 0.000
    127.000 0.000
    127.500 0.000
    $
    

    指示的光谱在4.5Hz和6.0Hz处出现尖峰,正如我们所预期的那样,基于合成输入数据的组成。请注意,问题似乎不是关于光谱计算的机制,我不是那方面的专家。目的是生成一组输出数据,以便我们轻松验证结果。我并不是说这种光谱计算对任何特定目的都有用,或根据任何数学校正。这里的目的是根除代码中潜在的cuda错误。

    作为附加注释,您的代码设置为对任意长度的输入数据集大小进行分段FFT(根据您对batch的使用情况,我的解释)。这就是我如何制作我的结果。我认为这是一件合理的事情,但是对于你的特定用例是否合理,我不知道。