无法理解C ++ STL中的1行代码来源:Lower_Bound / Upper_Bound

时间:2014-12-05 18:09:50

标签: php c++ stl binary-search lower-bound

我正在编写一些代码来查找最后一个键,其值不超过PHP的给定整数 例如,阵列(0 => 1,1 => 2,2 => 3,3 => 3,4 = 1→4)。给定整数3,我将找到密钥3.(二进制搜索)

我在互联网上找了一些关于二元搜索的参考文献 我找到了这个,就是找到第一个键,其值不小于C ++的给定整数 它说:

template <class _ForwardIter, class _Tp, class _Distance>
_ForwardIter __lower_bound(_ForwardIter __first, _ForwardIter __last,
                           const _Tp& __val, _Distance*) 
{
  _Distance __len = 0;
  distance(__first, __last, __len);
  _Distance __half;
  _ForwardIter __middle;

  while (__len > 0) {
    __half = __len >> 1;
    __middle = __first;
    advance(__middle, __half);
    if (*__middle < __val) {
      __first = __middle;
      ++__first;
      __len = __len - __half - 1;
    }
    else
      __len = __half;        //    <======this line
  }
  return __first;
}

那么,为什么要使用&#34; __ len = __half;&#34;而不是&#34; __ len = __half + 1;&#34;?
赢得了关键/价值,这是&#34; _中间&#34;在每个循环中,在这个二元搜索过程中被遗忘并迷失? 我的意思是,看起来这两个&#34; __ len&#34;&#t;&nbsp;&#39;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; >

PS: 我的原始问题的PHP代码是:

$cid_start  = $count - 1;
$len        = $count;
while($len > 0){
    $half   = $len >> 1;
    $middle = $cid_start - $half;
    if($c_index[$middle][1] > $time_start){
        $cid_start = $middle - 1;
        $len       = len       - $half - 1;
    }else{
        $len       = $half + 1;
    }
}

会起作用吗?还是会犯错? 当我在数组中找不到任何内容时,如何得到-1或者其他东西?

2 个答案:

答案 0 :(得分:0)

回答&#34;为什么不......?&#34;问题:此算法的工作方式略有不同。如果下限实际上是第一个元素,我们就会遇到问题。

__len将被缩减,直到它的2:

while (__len > 0)
{
    __half = __len >> 1; // __half is __len/2 floored

    __middle = __first + __half; // Assuming random access iterators, simplified

    if (*__middle < __val) // Lower bound is __first, so *__middle >= __val
    {
      // […]
    }
    else
      __len = __half + 1; // .. self-explanatory
}

,然后我们得到一个无限循环。即,__len == 2

while (__len > 0) // Okay, 2 > 0
{
    __half = __len >> 1; // __half is now 2 >> 1, which is 1

    __middle = __first + __half; // Rewritten for clarity. __middle == __first.

    if (*__middle < __val) // lower bound is at __first, so *__middle >= __val
    {
      // […]
    }
    else
      __len = __half + 1; // __len is 1 + 1 == 2
} // Endless loop

如果指定的长度为__half本身,则不会发生这种情况 - 然后对于__len == 2我们得到1,对于__len == 1我们得到0。

答案 1 :(得分:0)

二进制搜索的算法非常简单。

/**
 * Search $value in $array
 * Return the position in $array when found, -1 when not found
 * $array has numeric consecutive keys (0..count($array)-1)
 * $array is sorted ascending; this condition is mandatory for binary search
 * if $array is not sorted => the output is rubbish
 */
function search($value, array $array)
{
    // At each step search between positions $start and $end (including both)
    $start = 0;
    $end   = count($array) - 1;

    // End when the search interval shrunk to nothing
    while ($start <= $end) {
        // Get the middle of the interval
        // This is shorter and faster than intval(($start + $end) / 2)
        $middle = ($start + $end) >> 1;

        // Check the value in the middle of the current search interval
        if ($value == $array[$middle]) {
            // Found
            return $middle;
        }

        // Not found yet; the binary step: choose a direction
        if ($value < $array[$middle]) {
            // Search in the left half
            $end = $middle - 1;
        } else {
            // Search in the right half
            $start = $middle + 1;
        }
    }

    // Not found
    return -1;
}