使用melt()转换需要值查找的宽到长数据格式

时间:2014-12-05 15:08:44

标签: r reshape2 melt

我很难弄清楚如何将一些宽数据转换为长格式。我有三列字符串数据(A1_R00_FillerNPA1_R01_ADVA1_R02_1stEmbV),我希望将这些列融合到一列(WordCountRegion)中主题和项目正确的单词将从这三列中的一列映射到新的WordCountRegion列。

使用下面代码中的简单melt方法让我成为其中的一部分:

(注意:df中的奇怪字符无关紧要 - 请在此处忽略它们)

df <- structure(list(Subject = c(101L, 101L, 101L, 101L, 101L, 101L, 
101L, 101L, 101L, 101L, 101L, 101L, 101L, 101L, 101L, 101L, 101L, 
101L), condition = structure(c(2L, 1L, 3L, 2L, 1L, 3L, 2L, 1L, 
3L, 2L, 1L, 3L, 2L, 1L, 3L, 2L, 1L, 3L), .Label = c("P", "R", 
"S"), class = "factor"), item = c(101L, 102L, 103L, 101L, 102L, 
103L, 101L, 102L, 103L, 101L, 102L, 103L, 101L, 102L, 103L, 101L, 
102L, 103L), A1_R00_FillerNP = structure(c(3L, 2L, 1L, 3L, 2L, 
1L, 3L, 2L, 1L, 3L, 2L, 1L, 3L, 2L, 1L, 3L, 2L, 1L), .Label = c("SÌÇna d_r allvarliga konsekvenser", 
"SÌÇna d_r fina _ppeltr_d", "SÌÇna d_r gamla skottk_rror"
), class = "factor"), A1_R01_ADV = structure(c(1L, 1L, 2L, 1L, 
1L, 2L, 1L, 1L, 2L, 1L, 1L, 2L, 1L, 1L, 2L, 1L, 1L, 2L), .Label = c("alltid", 
"f_rresten"), class = "factor"), A1_R02_1stEmbV = structure(c(3L, 
2L, 1L, 3L, 2L, 1L, 3L, 2L, 1L, 3L, 2L, 1L, 3L, 2L, 1L, 3L, 2L, 
1L), .Label = c("diskuterade", "stod", "tv_ttade"), class = "factor"), 
    RT = c(0L, 149L, 247L, 272L, 171L, 245L, 317L, 0L, 233L, 
    0L, 981L, 750L, 272L, 171L, 334L, 317L, 0L, 233L), Region = structure(c(1L, 
    1L, 1L, 2L, 2L, 2L, 3L, 3L, 3L, 1L, 1L, 1L, 2L, 2L, 2L, 3L, 
    3L, 3L), .Label = c("R00", "R01", "R02"), class = "factor"), 
    RegionType = structure(c(3L, 3L, 3L, 2L, 2L, 2L, 1L, 1L, 
    1L, 3L, 3L, 3L, 2L, 2L, 2L, 1L, 1L, 1L), .Label = c("1stEmbV", 
    "ADV", "FillerNP"), class = "factor"), DV = structure(c(1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 
    2L, 2L), .Label = c("FIRST_FIXATION_DURATION", "GAZE_DURATION"
    ), class = "factor")), .Names = c("Subject", "condition", 
"item", "A1_R00_FillerNP", "A1_R01_ADV", "A1_R02_1stEmbV", "RT", 
"Region", "RegionType", "DV"), class = "data.frame", row.names = c(NA, 
-18L))

df1 = melt(df, measure.vars = c("A1_R00_FillerNP","A1_R01_ADV","A1_R02_1stEmbV"), var = "WordCountRegion")

问题是这段代码错误地破坏了跨区域的单词。我最终输出如下所示的输出,其中单词不会按Region指定的方式中断,而是延伸到Region的值,WordCountRegionvalue可以看到。很明显,如果我要使用它,那么我需要某种额外的规范,以便melt()能够正确地破坏数据。我只是不确定如何做到这一点(或者如果它可以在melt()中完成)。

   Subject condition item  RT Region RegionType                      DV WordCountRegion                             value
1      101         R  101   0    R00   FillerNP FIRST_FIXATION_DURATION A1_R00_FillerNP       SÌÇna d_r gamla skottk_rror
2      101         P  102 149    R00   FillerNP FIRST_FIXATION_DURATION A1_R00_FillerNP          SÌÇna d_r fina _ppeltr_d
3      101         S  103 247    R00   FillerNP FIRST_FIXATION_DURATION A1_R00_FillerNP SÌÇna d_r allvarliga konsekvenser
4      101         R  101 272    R01        ADV FIRST_FIXATION_DURATION A1_R00_FillerNP       SÌÇna d_r gamla skottk_rror
5      101         P  102 171    R01        ADV FIRST_FIXATION_DURATION A1_R00_FillerNP          SÌÇna d_r fina _ppeltr_d
6      101         S  103 245    R01        ADV FIRST_FIXATION_DURATION A1_R00_FillerNP SÌÇna d_r allvarliga konsekvenser
7      101         R  101 317    R02    1stEmbV FIRST_FIXATION_DURATION A1_R00_FillerNP       SÌÇna d_r gamla skottk_rror
8      101         P  102   0    R02    1stEmbV FIRST_FIXATION_DURATION A1_R00_FillerNP          SÌÇna d_r fina _ppeltr_d
9      101         S  103 233    R02    1stEmbV FIRST_FIXATION_DURATION A1_R00_FillerNP SÌÇna d_r allvarliga konsekvenser
10     101         R  101   0    R00   FillerNP           GAZE_DURATION A1_R00_FillerNP       SÌÇna d_r gamla skottk_rror
11     101         P  102 981    R00   FillerNP           GAZE_DURATION A1_R00_FillerNP          SÌÇna d_r fina _ppeltr_d
12     101         S  103 750    R00   FillerNP           GAZE_DURATION A1_R00_FillerNP SÌÇna d_r allvarliga konsekvenser
13     101         R  101 272    R01        ADV           GAZE_DURATION A1_R00_FillerNP       SÌÇna d_r gamla skottk_rror
14     101         P  102 171    R01        ADV           GAZE_DURATION A1_R00_FillerNP          SÌÇna d_r fina _ppeltr_d
15     101         S  103 334    R01        ADV           GAZE_DURATION A1_R00_FillerNP SÌÇna d_r allvarliga konsekvenser
16     101         R  101 317    R02    1stEmbV           GAZE_DURATION A1_R00_FillerNP       SÌÇna d_r gamla skottk_rror
17     101         P  102   0    R02    1stEmbV           GAZE_DURATION A1_R00_FillerNP          SÌÇna d_r fina _ppeltr_d
18     101         S  103 233    R02    1stEmbV           GAZE_DURATION A1_R00_FillerNP SÌÇna d_r allvarliga konsekvenser
19     101         R  101   0    R00   FillerNP FIRST_FIXATION_DURATION      A1_R01_ADV                            alltid
20     101         P  102 149    R00   FillerNP FIRST_FIXATION_DURATION      A1_R01_ADV                            alltid
21     101         S  103 247    R00   FillerNP FIRST_FIXATION_DURATION      A1_R01_ADV                         f_rresten

我是否有办法修改melt()以使Region排队/匹配,如下例所示:

   Subject condition item  RT Region RegionType                      DV WordCountRegion                             value
1      101         R  101   0    R00   FillerNP FIRST_FIXATION_DURATION A1_R00_FillerNP       SÌÇna d_r gamla skottk_rror
2      101         P  102 149    R00   FillerNP FIRST_FIXATION_DURATION A1_R00_FillerNP          SÌÇna d_r fina _ppeltr_d
3      101         S  103 247    R00   FillerNP FIRST_FIXATION_DURATION A1_R00_FillerNP SÌÇna d_r allvarliga konsekvenser
4      101         R  101 272    R01        ADV FIRST_FIXATION_DURATION A1_R01_ADV                                 alltid
5      101         P  102 171    R01        ADV FIRST_FIXATION_DURATION A1_R01_ADV                                 alltid
6      101         S  103 245    R01        ADV FIRST_FIXATION_DURATION A1_R01_ADV                              f_rresten
7      101         R  101 317    R02    1stEmbV FIRST_FIXATION_DURATION A1_R02_1stEmbV                           tv_ttade
8      101         P  102   0    R02    1stEmbV FIRST_FIXATION_DURATION A1_R02_1stEmbV                               stod
9      101         S  103 233    R02    1stEmbV FIRST_FIXATION_DURATION A1_R02_1stEmbV                        diskuterade
10     101         R  101   0    R00   FillerNP           GAZE_DURATION A1_R00_FillerNP       SÌÇna d_r gamla skottk_rror
11     101         P  102 981    R00   FillerNP           GAZE_DURATION A1_R00_FillerNP          SÌÇna d_r fina _ppeltr_d
12     101         S  103 750    R00   FillerNP           GAZE_DURATION A1_R00_FillerNP SÌÇna d_r allvarliga konsekvenser

或者,如果我完全使用了错误的功能,有人可以指点我寻求更好的解决方案吗?也许我需要一些可以进行实际查找的东西?

1 个答案:

答案 0 :(得分:1)

您可以创建一个小查找表,将其合并,然后使用它来过滤您的融化数据帧,我相信这会为您提供您正在寻找的结果。

region_df <- data.frame(var = c("A1_R00_FillerNP","A1_R01_ADV","A1_R02_1stEmbV"), 
  Region = c('R00','R01','R02'))

df2 <- merge(df1, region_df)
df3 <- subset(df2, var==WordCountRegion)