数据:
{'Open': {0: 159.18000000000001, 1: 157.99000000000001, 2: 157.66, 3: 157.53999999999999, 4: 155.03999999999999, 5: 155.47999999999999, 6: 155.44999999999999, 7: 155.93000000000001, 8: 155.0, 9: 157.72999999999999},
'Close': {0: 157.97999999999999, 1: 157.66, 2: 157.53999999999999, 3: 155.03999999999999, 4: 155.47999999999999, 5: 155.44999999999999, 6: 155.87, 7: 155.0, 8: 157.72999999999999, 9: 157.31}}
代码:
import pandas as pd
d = #... data above.
df = pd.DataFrame.from_dict(d)
df['Close_Stdev'] = pd.rolling_std(df[['Close']],window=5)
print df
# Close Open Close_Stdev
# 0 157.98 159.18 NaN
# 1 157.66 157.99 NaN
# 2 157.54 157.66 NaN
# 3 155.04 157.54 NaN
# 4 155.48 155.04 1.369452
# 5 155.45 155.48 1.259754
# 6 155.87 155.45 0.975464
# 7 155.00 155.93 0.358567
# 8 157.73 155.00 1.065190
# 9 157.31 157.73 1.189378
问题:
上面的代码没有问题。但是,rolling_std
是否可以将Close
中的前四个值和Open
中的第五个值计入其观察窗口?基本上,我希望rolling_std
为其第一个Stdev计算以下内容:
157.98 # From Close
157.66 # From Close
157.54 # From Close
155.04 # From Close
155.04 # Bzzt, from Open.
从技术上讲,这意味着观察列表的最后一个值始终是最后Close
值。
逻辑/原因:
显然,这是库存数据。我试图检查在计算标准差时是否更好地考虑当前交易日股票的Open
价格,而不是仅仅检查前一个{{1 }}第
期望的结果:
Close
额外详情:
这可以通过使用公式# Close Open Close_Stdev Desired_Stdev
# 0 157.98 159.18 NaN NaN
# 1 157.66 157.99 NaN NaN
# 2 157.54 157.66 NaN NaN
# 3 155.04 157.54 NaN NaN
# 4 155.48 155.04 1.369452 1.480311
# 5 155.45 155.48 1.259754 1.255149
# 6 155.87 155.45 0.975464 0.994017
# 7 155.00 155.93 0.358567 0.361151
# 8 157.73 155.00 1.065190 0.368035
# 9 157.31 157.73 1.189378 1.291464
并选择下面的屏幕截图中显示的数字在Excel中轻松完成。但是,由于个人原因,我希望在Python和STDEV.S
中完成此操作(我突出显示pandas
,但由于Snagit的影响,它不仅仅是可见的)。
答案 0 :(得分:5)
您可以使用Welford's method来计算标准偏差。 这样做的好处是它可以在整个列上表示为矢量化算术,只需5次迭代。 这应该比逐行计算更快,并且必须为每一行组成窗口。
首先,这是一个健全性检查,显示Welford的方法可以重现与
相同的结果df['Close_Stdev'] = pd.rolling_std(df[['Close']],window=5)
import numpy as np
import pandas as pd
class OnlineVariance(object):
"""
Welford's algorithm computes the sample variance incrementally.
"""
def __init__(self, iterable=None, ddof=1):
self.ddof, self.n, self.mean, self.M2 = ddof, 0, 0.0, 0.0
if iterable is not None:
for datum in iterable:
self.include(datum)
def include(self, datum):
self.n += 1
self.delta = datum - self.mean
self.mean += self.delta / self.n
self.M2 += self.delta * (datum - self.mean)
self.variance = self.M2 / (self.n-self.ddof)
@property
def std(self):
return np.sqrt(self.variance)
d = {'Open': {0: 159.18000000000001, 1: 157.99000000000001, 2: 157.66, 3:
157.53999999999999, 4: 155.03999999999999, 5: 155.47999999999999, 6:
155.44999999999999, 7: 155.93000000000001, 8: 155.0, 9: 157.72999999999999},
'Close': {0: 157.97999999999999, 1: 157.66, 2: 157.53999999999999, 3:
155.03999999999999, 4: 155.47999999999999, 5: 155.44999999999999, 6: 155.87, 7:
155.0, 8: 157.72999999999999, 9: 157.31}}
df = pd.DataFrame.from_dict(d)
df['Close_Stdev'] = pd.rolling_std(df[['Close']],window=5)
ov = OnlineVariance()
for n in range(5):
ov.include(df['Close'].shift(n))
df['std'] = ov.std
print(df)
assert np.isclose(df['Close_Stdev'], df['std'], equal_nan=True).all()
产量
Close Open Close_Stdev std
0 157.98 159.18 NaN NaN
1 157.66 157.99 NaN NaN
2 157.54 157.66 NaN NaN
3 155.04 157.54 NaN NaN
4 155.48 155.04 1.369452 1.369452
5 155.45 155.48 1.259754 1.259754
6 155.87 155.45 0.975464 0.975464
7 155.00 155.93 0.358567 0.358567
8 157.73 155.00 1.065190 1.065190
9 157.31 157.73 1.189378 1.189378
因此,要在计算中加入开头价值,
ov = OnlineVariance()
ov.include(df['Open'])
for n in range(1, 5):
ov.include(df['Close'].shift(n))
df['std'] = ov.std
print(df)
产量
Close Open std
0 157.98 159.18 NaN
1 157.66 157.99 NaN
2 157.54 157.66 NaN
3 155.04 157.54 NaN
4 155.48 155.04 1.480311
5 155.45 155.48 1.255149
6 155.87 155.45 0.994017
7 155.00 155.93 0.361151
8 157.73 155.00 0.368035
9 157.31 157.73 1.291464
答案 1 :(得分:0)
我和numpy
一起玩,直到我得到了我想要的东西。它速度非常快,但它不是 pandaic ,并且在很多层面上都可能不安全。我对这个更漂亮的答案持开放态度。与此同时,这对我的事业来说足够好。
import numpy
...
new_std = []
for i in range(df2.shape[0]+1):
print df2['Close'].iloc[i-5:i]
try:
close_ = np.array(df2['Close'].iloc[i-5:i])
open_ = np.array(df2['Open'].iloc[i-5:i])
# Change the close from last date in list to the open
# of that same date to simulate before-end-of-day trading.
close_[-1] = open_[-1]
new_std.append(np.std(close_, ddof=1))
except:
new_std.append(np.NAN)
df2['Desired_Stdev'] = new_std[1:] # Truncate to fit index.
print df2
# Close Open Close_Stdev Desired_Stdev
# 0 157.98 159.18 NaN NaN
# 1 157.66 157.99 NaN NaN
# 2 157.54 157.66 NaN NaN
# 3 155.04 157.54 NaN NaN
# 4 155.48 155.04 1.369452 1.480311
# 5 155.45 155.48 1.259754 1.255149
# 6 155.87 155.45 0.975464 0.994017
# 7 155.00 155.93 0.358567 0.361151
# 8 157.73 155.00 1.065190 0.368035
# 9 157.31 157.73 1.189378 1.291464