如何使用堆栈而不是递归?

时间:2014-12-03 08:25:15

标签: c algorithm recursion stack

我正在尝试使用堆栈而不是递归。我回顾了类似的答案,看起来很好,但我真的不明白。我所做的就是让代码变得更糟。 我正在尝试使用以下代码中的堆栈:http://www.geeksforgeeks.org/backtracking-set-3-n-queen-problem/
下面的代码通过回溯递归实现n皇后问题,它工作正常。我只需要使用堆栈而不是递归。我认为回溯算法是一个好主意,使用堆栈来创建递归。

任何帮助将不胜感激。

#define N 4
#include<stdio.h>

/* A utility function to print solution */
void printSolution(int board[N][N])
{
    for (int i = 0; i < N; i++)
    {
        for (int j = 0; j < N; j++)
            printf(" %d ", board[i][j]);
        printf("\n");
    }
}

/* A utility function to check if a queen can be placed on board[row][col]
   Note that this function is called when "col" queens are already placeed
   in columns from 0 to col -1. So we need to check only left side for
   attacking queens */
bool isSafe(int board[N][N], int row, int col)
{
    int i, j;

    /* Check this row on left side */
    for (i = 0; i < col; i++)
    {
        if (board[row][i])
            return false;
    }

    /* Check upper diagonal on left side */
    for (i = row, j = col; i >= 0 && j >= 0; i--, j--)
    {
        if (board[i][j])
            return false;
    }

    /* Check lower diagonal on left side */
    for (i = row, j = col; j >= 0 && i < N; i++, j--)
    {
        if (board[i][j])
            return false;
    }

    return true;
}

/* A recursive utility function to solve N Queen problem */
bool solveNQUtil(int board[N][N], int col)
{
    /* base case: If all queens are placed then return true */
    if (col >= N)
        return true;

    /* Consider this column and try placing this queen in all rows
       one by one */
    for (int i = 0; i < N; i++)
    {
        /* Check if queen can be placed on board[i][col] */
        if ( isSafe(board, i, col) )
        {
            /* Place this queen in board[i][col] */
            board[i][col] = 1;

            /* recur to place rest of the queens */
            if ( solveNQUtil(board, col + 1) == true )
                return true;

            /* If placing queen in board[i][col] doesn't lead to a solution
               then remove queen from board[i][col] */
            board[i][col] = 0; // BACKTRACK
        }
    }

     /* If queen can not be place in any row in this colum col
        then return false */
    return false;
}

/* This function solves the N Queen problem using Backtracking.  It mainly uses
solveNQUtil() to solve the problem. It returns false if queens cannot be placed,
otherwise return true and prints placement of queens in the form of 1s. Please
note that there may be more than one solutions, this function prints one of the
feasible solutions.*/
bool solveNQ()
{
    int board[N][N] = { {0, 0, 0, 0},
        {0, 0, 0, 0},
        {0, 0, 0, 0},
        {0, 0, 0, 0}
    };

    if ( solveNQUtil(board, 0) == false )
    {
      printf("Solution does not exist");
      return false;
    }

    printSolution(board);
    return true;
}

// driver program to test above function
int main()
{
    solveNQ();

    getchar();
    return 0;
}

1 个答案:

答案 0 :(得分:0)

考虑到在每次递归时,您正在测试下一列。你已经在你的电路板上有一些堆栈,col是你的堆栈指针。

考虑到你只有一个女王,你甚至可以减少所需头部空间的大小。

const int size=5; // your board size
int isSafe(const int pos[size],const int col,const int row) {
    for(int i=0;i<col;i++) { //check up to the stack pointer ( anything beyond is garbage )
        if(pos[i]==row){ //check on same row
            return 0;
        }
        //check diagonals
        int delta=col-i;
        if(pos[i]==(row+delta)) { 
            return 0;
        }
        if(pos[i]==(row-delta)) {
            return 0;
        }
    }
    return 1;
}

int solveNQ() {
    int pos[size];
    int col=0;
    int row=0;
    while(col<size) {
        if(isSafe(pos,col,row)) {
            pos[col]=row;
            col++;
            row=0;
        }else{
            row++;
            while(row==size) { // rollback to previous while end of col
                if(col==0) { 
                    // we seem to have found no reasonable solution
                    // as we rolled back further
                    return 0;
                }
                col--; 
                row=pos[col]+1; // pop previous position and try the next one
            }
        }
    }
    return 1;
}
int main() {
    solveNQ();
    return 0;
}

这是以伪递归的方式解决你的问题