我的Maxent分类器与gis算法一起工作正常,但不适用于iis算法。它没有抛出任何错误,只是一些警告

时间:2014-12-02 10:19:30

标签: python-2.7 nltk maxent

我正在尝试实现Maxent分类器,但我在使用时面临问题 iis算法。以下代码适用于gis算法。

import nltk
from nltk.classify import MaxentClassifier, accuracy
from featx import split_label_feats, label_feats_from_corpus
from nltk.corpus import movie_reviews
from nltk.classify import megam
from openpyxl import load_workbook
from featx import bag_of_non_words  
from nltk.tokenize import word_tokenize
movie_reviews.categories()
lfeats = label_feats_from_corpus(movie_reviews)

lfeats.keys()
train_feats, test_feats = split_label_feats(lfeats)
me_classifier = nltk.MaxentClassifier.train(train_feats, algorithm='iis', trace=0, max_iter=3)
print accuracy(me_classifier, test_feats)

我正在使用WIN32机器,上面的代码来自Jacob Perkins的NLTK书。 它引发的警告是

C:\Python27\lib\site-packages\nltk\classify\maxent.py:1308: RuntimeWarning: invalid value encountered in multiply
  sum1 = numpy.sum(exp_nf_delta * A, axis=0)
C:\Python27\lib\site-packages\nltk\classify\maxent.py:1309: RuntimeWarning: invalid value encountered in multiply
  sum2 = numpy.sum(nf_exp_nf_delta * A, axis=0)
C:\Python27\lib\site-packages\nltk\classify\maxent.py:1315: RuntimeWarning: invalid value encountered in divide
  deltas -= (ffreq_empirical - sum1) / -sum2

然后计算机挂起。所以我必须停止执行。

1 个答案:

答案 0 :(得分:2)

首先,您导入库未排序的方式太混乱了。还有很多未使用的进口。经过一些谷歌搜索,所以让我们减少进口并坚持下去:

from collections import defaultdict

import nltk
from nltk.classify import MaxentClassifier, accuracy
from nltk.corpus import movie_reviews

然后我发现featx是Jacob Perkins用于他的书的一些示例模块,这是一个更好的来源(https://github.com/sophist114/Python/blob/master/EmotionAnalysis.py)。所以,让我们这里有一个文档版本,并对函数的作用进行了一些解释:

def bag_of_words(words):
    """
    Change a document into a BOW feature vector represented by a dict object.
    """
    return dict([(word, True) for word in words])


def label_feats_from_corpus(corp, feature_detector=bag_of_words):
    """
    Change the corpus into a feature matrix. Sometimes the proceess is 
    known as vectorization. The default is the use BOW features.
    """
    label_feats = defaultdict(list)
    for label in corp.categories():
        for fileid in corp.fileids(categories=[label]):
            feats = feature_detector(corp.words(fileids=[fileid]))
            label_feats[label].append(feats)
    return label_feats


def split_label_feats(lfeats, split=0.75):
    """
    Splits corpus into train and test portion.
    This module is used after using `label_feats_from_corpus`.
    """
    train_feats = []
    test_feats = []
    for label, feats in lfeats.iteritems():
        cutoff = int(len(feats) * split)
        train_feats.extend([(feat, label) for feat in feats[:cutoff]])
        test_feats.extend([(feat, label) for feat in feats[cutoff:]])
    return train_feats, test_feats

现在让我们完成训练模型并测试它的过程,首先是特征提取:

# Extract features from corpus and for each document label it with the appropriate labels. 
label_feats = label_feats_from_corpus(movie_reviews)

让我们看看在致电label_feats_from_corpus后我们得到了什么:

for label in label_feats:
    for document in label_feats[label]: 
        print label, document
        break
    break

[OUT]:

neg {u'all': True, u'concept': True, u'skip': True, u'go': True, u'seemed': True, u'suits': True, u'presents': True, u'to': True, u'sitting': True, u'very': True, u'horror': True, u'continues': True, u'every': True, u'exact': True, u'cool': True, u'entire': True, u'did': True, u'dig': True, u'flick': True, u'neighborhood': True, u'crow': True, u'street': True, u'video': True, u'further': True, u'even': True, u'what': True, u'hide': True, u'giving': True, u'new': True, u'ever': True, u'here': True, u'understanding': True, u'entertain': True, u'studio': True, u'others': True, u'kudos': True, u'weird': True, u'makes': True, u'explained': True, u'rarely': True, u'plot': True, u'fed': True, u'disappearances': True, u'from': True, u'would': True, u'&': True, u'two': True, u'music': True, u'films': True, u'themselves': True, u'until': True, u'more': True, u'teen': True, u'clue': True, u'stick': True, u'given': True, u'me': True, u'this': True, u'package': True, u'movies': True, u'making': True, u'my': True, u'give': True, u'fuck': True, u'want': True, u'sense': True, u'!': True, u'holds': True, u'write': True, u'how': True, u'hot': True, u'stir': True, u'okay': True, u'beauty': True, u'mess': True, u'overall': True, u'after': True, u'coming': True, u'such': True, u'guys': True, u'types': True, u'a': True, u'downshifts': True, u'chasing': True, u'redundant': True, u'so': True, u'enter': True, u'playing': True, u'executed': True, u'over': True, u'insight': True, u'years': True, u'still': True, u'its': True, u'before': True, u'thrilling': True, u'somewhere': True, u',': True, u'actually': True, u'meantime': True, u'production': True, u'main': True, u'might': True, u'then': True, u'good': True, u'break': True, u'they': True, u'half': True, u'not': True, u'now': True, u'always': True, u'didn': True, u'arrow': True, u'mean': True, u'bentley': True, u'generation': True, u'idea': True, u'engaging': True, u'happen': True, u'out': True, u"'": True, u'since': True, u'7': True, u'got': True, u'highway': True, u'shows': True, u'blair': True, u'turning': True, u'little': True, u'completely': True, u'shelves': True, u'starts': True, u'terribly': True, u'american': True, u'jumbled': True, u'chopped': True, u'one': True, u'fantasy': True, u'visions': True, u'guess': True, u'"': True, u'2': True, u'too': True, u'wrapped': True, u'final': True, u'slasher': True, u'that': True, u'explanation': True, u'took': True, u'part': True, u'attempt': True, u'10': True, u'kind': True, u'scenes': True, u'feeling': True, u'and': True, u'mind': True, u'sad': True, u'have': True, u'need': True, u'seem': True, u'apparently': True, u'-': True, u'also': True, u'which': True, u'sure': True, u'normal': True, u'who': True, u'most': True, u'don': True, u'drive': True, u'ways': True, u'entertaining': True, u'review': True, u'came': True, u'ending': True, u'find': True, u'touches': True, u'craziness': True, u'(': True, u'should': True, u'only': True, u'going': True, u'pretty': True, u'joblo': True, u'folks': True, u'8': True, u'do': True, u'his': True, u'get': True, u'watch': True, u'feels': True, u'despite': True, u'him': True, u'bad': True, u'where': True, u'lazy': True, u'see': True, u'decided': True, u'are': True, u'sorta': True, u'movie': True, u'nightmare': True, u'3': True, u'unravel': True, u'melissa': True, u'correctly': True, u'flicks': True, u'we': True, u'packaged': True, u'nightmares': True, u'genre': True, u'20': True, u'memento': True, u'both': True, u'accident': True, u's': True, u'witch': True, u'point': True, u'character': True, u'whatever': True, u'tons': True, u'simply': True, u'church': True, u'throughout': True, u'decent': True, u'been': True, u'.': True, u'secret': True, u'life': True, u'kids': True, u'personally': True, u'look': True, u'these': True, u'plain': True, u'harder': True, u'apparitions': True, u'while': True, u'neat': True, u've': True, u'is': True, u'it': True, u'couples': True, u'someone': True, u'in': True, u'chase': True, u'different': True, u')': True, u'things': True, u'make': True, u'same': True, u'member': True, u'strange': True, u'9': True, u'party': True, u'applaud': True, u'drink': True, u'director': True, u'running': True, u'characters': True, u'off': True, u'i': True, u'salvation': True, u'well': True, u'obviously': True, u'edge': True, u'echoes': True, u'the': True, u'away': True, u'just': True, u'generally': True, u'elm': True, u'excites': True, u'seems': True, u'snag': True, u'wes': True, u'4': True, u'has': True, u'big': True, u'showing': True, u'five': True, u'know': True, u'world': True, u'bit': True, u'password': True, u'dreams': True, u'like': True, u'lost': True, u'audience': True, u't': True, u'looooot': True, u'because': True, u'deal': True, u'people': True, u'back': True, u'dead': True, u'unraveling': True, u'critique': True, u'confusing': True, u'for': True, u'bottom': True, u'/': True, u'does': True, u'assuming': True, u'?': True, u'be': True, u'although': True, u'by': True, u'on': True, u'about': True, u'oh': True, u'of': True, u'runtime': True, u'or': True, u'own': True, u'strangeness': True, u'into': True, u'down': True, u'your': True, u'her': True, u'there': True, u'start': True, u'way': True, u'biggest': True, u':': True, u'head': True, u'offering': True, u'but': True, u'taken': True, u'line': True, u'trying': True, u'with': True, u'he': True, u'up': True, u'us': True, u'problem': True, u'minutes': True, u'figured': True, u'doesn': True, u'an': True, u'as': True, u'girlfriend': True, u'mold': True, u'sagemiller': True, u'film': True, u'again': True, u'no': True, u'when': True, u'actors': True, u'you': True, u'really': True, u'dies': True, u'problems': True, u'ago': True}

所以我们得到一个带有neg标签的文档,对于我们文档中的每个单词,我们看到所有单词都是True。现在每个文档只包含它所具有的特征(即单词)。

让我们继续前进:

# Let's split the data up into train and test.
train_feats, test_feats = split_label_feats(label_feat) 

现在我们看到split_label_feats更改了键值结构,以便train_feats的每次迭代都为我们提供了一个带有(features,label)元组的文档

for features, label in train_documents:
    label, features
    break

print len(train_documents)
print len(test_documents)
# Get the number of documents in movie_review corpus
num_docs_in_corpus = len(list(chain(*[movie_reviews.fileids(categories=[cat]) for cat in movie_reviews.categories()])))
print len(train_documents) + len(test_documents) == num_docs_in_corpus

[OUT]:

1500
500
True

因此,当您运行该行时,似乎错误只能由最后两行代码引起:

# To train the tagger.
me_classifier = nltk.MaxentClassifier.train(train_documents, algorithm='iis', trace=0, max_iter=3)

您收到这些警告但请注意代码仍在构建模型 !!!!所以这只是由于下溢导致的警告,请参阅What are arithmetic underflow and overflow in C?

构建分类器需要一段时间,但不要害怕,只是等到它结束,不要ctr + c结束python进程。如果你终止进程,你将会看到这个:

Training stopped: keyboard interrupt

所以让我们理解警告发生的原因,给出了4个警告:

/usr/local/lib/python2.7/dist-packages/nltk/classify/maxent.py:1306: RuntimeWarning: overflow encountered in power
  exp_nf_delta = 2 ** nf_delta
/usr/local/lib/python2.7/dist-packages/nltk/classify/maxent.py:1308: RuntimeWarning: invalid value encountered in multiply
  sum1 = numpy.sum(exp_nf_delta * A, axis=0)
/usr/local/lib/python2.7/dist-packages/nltk/classify/maxent.py:1309: RuntimeWarning: invalid value encountered in multiply
  sum2 = numpy.sum(nf_exp_nf_delta * A, axis=0)
/usr/local/lib/python2.7/dist-packages/nltk/classify/maxent.py:1315: RuntimeWarning: invalid value encountered in divide
  deltas -= (ffreq_empirical - sum1) / -sum2

所有这些都指向用于计算NLTk的最大实现中的delta的相同函数,即https://github.com/nltk/nltk/blob/develop/nltk/classify/maxent.py#L1208。并且您发现此增量计算特定于IIS(改进的迭代缩放)算法。

此时,您需要了解机器学习和监督学习,https://en.wikipedia.org/wiki/Supervised_learning

为了回答你的问题,变暖仅仅表明三角洲在某些时候难以计算,但处理仍然是合理的,可能是因为在计算delta时有一些超小的值。 算法正在运行。这不是悬挂,而是训练。

为了欣赏NLTK中MaxEnt的整洁实现,我建议您完成本课程https://www.youtube.com/playlist?list=PL6397E4B26D00A269或更多核心机器学习课程,转到https://www.coursera.org/course/ml

训练分类器需要时间和计算果汁,等待足够长的时间后,您应该看到它确实如此:

print accuracy(me_classifier, test_feats)

[OUT]:

0.5

你可以看到准确性很差,正如预期的那样,因为delta计算太过分了,0.5就是你的基线。通过上面列出的课程,你应该能够在知道它们是如何产生以及如何调整它们之后产生更好的分类器。

顺便说一句,请记住腌制分类器,以便下次不必重新训练,请参阅Save Naive Bayes Trained Classifier in NLTKPickling a trained classifier yields different results from the results obtained directly from a newly but identically trained classifier

这是完整的代码:

from itertools import chain
from collections import defaultdict

import nltk
from nltk.classify import MaxentClassifier, accuracy
from nltk.corpus import movie_reviews

def bag_of_words(words):
    """
    Change a document into a BOW feature vector represented by a dict object.
    """
    return dict([(word, True) for word in words])


def label_feats_from_corpus(corp, feature_detector=bag_of_words):
    """
    Change the corpus into a feature matrix. Sometimes the proceess is 
    known as vectorization. The default is the use BOW features.
    """
    label_feats = defaultdict(list)
    for label in corp.categories():
        for fileid in corp.fileids(categories=[label]):
            feats = feature_detector(corp.words(fileids=[fileid]))
            label_feats[label].append(feats)
    return label_feats


def split_label_feats(lfeats, split=0.75):
    """
    Splits corpus into train and test portion.
    This module is used after using `label_feats_from_corpus`.
    """
    train_feats = []
    test_feats = []
    for label, feats in lfeats.iteritems():
        cutoff = int(len(feats) * split)
        train_feats.extend([(feat, label) for feat in feats[:cutoff]])
        test_feats.extend([(feat, label) for feat in feats[cutoff:]])
    return train_feats, test_feats


# Extract features from corpus and for each document label it with the appropriate labels. 
label_feats = label_feats_from_corpus(movie_reviews)
'''
for label in label_feats:
    for document in label_feats[label]: 
        print label, document
        break
    break
'''

# Let's split the data up into train and test.
train_documents, test_documents = split_label_feats(label_feats) 
'''
# Now we see that the `split_label_feats` change the key value structure such that each iteration of train_feats gives us a document with a tuple of the (features, label)
for features, label in train_documents:
    print label, features
    break

print len(train_documents)
print len(test_documents)
# Get the number of documents in movie_review corpus
num_docs_in_corpus = len(list(chain(*[movie_reviews.fileids(categories=[cat]) for cat in movie_reviews.categories()])))
print len(train_documents) + len(test_documents) == num_docs_in_corpus
'''

# To train the tagger.
me_classifier = nltk.MaxentClassifier.train(train_documents, algorithm='iis', trace=0, max_iter=3)
print accuracy(me_classifier, test_feats)