我试图进行并行缩减以在CUDA中对数组求和。目前我传递一个数组,用于存储每个块中元素的总和。这是我的代码:
#include <cstdlib>
#include <iostream>
#include <cuda.h>
#include <cuda_runtime_api.h>
#include <helper_cuda.h>
#include <host_config.h>
#define THREADS_PER_BLOCK 256
#define CUDA_ERROR_CHECK(ans) { gpuAssert((ans), __FILE__, __LINE__); }
using namespace std;
inline void gpuAssert(cudaError_t code, char *file, int line, bool abort=true)
{
if (code != cudaSuccess)
{
fprintf(stderr,"GPUassert: %s %s %d\n", cudaGetErrorString(code), file, line);
if (abort) exit(code);
}
}
struct double3c {
double x;
double y;
double z;
__host__ __device__ double3c() : x(0), y(0), z(0) {}
__host__ __device__ double3c(int x_, int y_, int z_) : x(x_), y(y_), z(z_) {}
__host__ __device__ double3c& operator+=(const double3c& rhs) { x += rhs.x; y += rhs.y; z += rhs.z;}
__host__ __device__ double3c& operator/=(const double& rhs) { x /= rhs; y /= rhs; z /= rhs;}
};
class VectorField {
public:
double3c *data;
int size_x, size_y, size_z;
bool is_copy;
__host__ VectorField () {}
__host__ VectorField (int x, int y, int z) {
size_x = x; size_y = y; size_z = z;
is_copy = false;
CUDA_ERROR_CHECK (cudaMalloc(&data, x * y * z * sizeof(double3c)));
}
__host__ VectorField (const VectorField& other) {
size_x = other.size_x; size_y = other.size_y; size_z = other.size_z;
this->data = other.data;
is_copy = true;
}
__host__ ~VectorField() {
if (!is_copy) CUDA_ERROR_CHECK (cudaFree(data));
}
};
__global__ void KernelCalculateMeanFieldBlock (VectorField m, double3c* result) {
__shared__ double3c blockmean[THREADS_PER_BLOCK];
int index = threadIdx.x + blockIdx.x * blockDim.x;
if (index < m.size_x * m.size_y * m.size_z) blockmean[threadIdx.x] = m.data[index] = double3c(0, 1, 0);
else blockmean[threadIdx.x] = double3c(0,0,0);
__syncthreads();
for(int s = THREADS_PER_BLOCK / 2; s > 0; s /= 2) {
if (threadIdx.x < s) blockmean[threadIdx.x] += blockmean[threadIdx.x + s];
__syncthreads();
}
if(threadIdx.x == 0) result[blockIdx.x] = blockmean[0];
}
double3c CalculateMeanField (VectorField& m) {
int blocknum = (m.size_x * m.size_y * m.size_z - 1) / THREADS_PER_BLOCK + 1;
double3c *mean = new double3c[blocknum]();
double3c *cu_mean;
CUDA_ERROR_CHECK (cudaMalloc(&cu_mean, sizeof(double3c) * blocknum));
CUDA_ERROR_CHECK (cudaMemset (cu_mean, 0, sizeof(double3c) * blocknum));
KernelCalculateMeanFieldBlock <<<blocknum, THREADS_PER_BLOCK>>> (m, cu_mean);
CUDA_ERROR_CHECK (cudaPeekAtLastError());
CUDA_ERROR_CHECK (cudaDeviceSynchronize());
CUDA_ERROR_CHECK (cudaMemcpy(mean, cu_mean, sizeof(double3c) * blocknum, cudaMemcpyDeviceToHost));
CUDA_ERROR_CHECK (cudaFree(cu_mean));
for (int i = 1; i < blocknum; i++) {mean[0] += mean[i];}
mean[0] /= m.size_x * m.size_y * m.size_z;
double3c aux = mean[0];
delete[] mean;
return aux;
}
int main() {
VectorField m(100,100,100);
double3c sum = CalculateMeanField (m);
cout << sum.x << '\t' << sum.y << '\t' <<sum.z;
return 0;
}
编辑
发布功能代码。构造一个带有10x10x10元素的VectorField
工作正常并给出平均值1,但使用100x100x100元素构造它会给出平均值~0.97(它随着运行而变化)。这是进行并行缩减的正确方法,还是我应该坚持每个块一次内核启动?
答案 0 :(得分:12)
当我编译你现在在linux上的代码时,我收到以下警告:
t614.cu(55): warning: __shared__ memory variable with non-empty constructor or destructor (potential race between threads)
不应忽略此类警告。它与这行代码相关联:
__shared__ double3c blockmean[THREADS_PER_BLOCK];
由于存储在共享内存中的这些对象的初始化(通过构造函数)将以某种任意顺序发生,并且您和后续代码之间没有障碍,这些代码也将设置这些值,不可预测的事情(*)可能会发生。
如果我在代码中插入__syncthreads()
以将构造函数活动与后续代码隔离,我会得到预期的结果:
__shared__ double3c blockmean[THREADS_PER_BLOCK];
int index = threadIdx.x + blockIdx.x * blockDim.x;
__syncthreads(); // add this line
if (index < m.size_x * m.size_y * m.size_z) blockmean[threadIdx.x] = m.data[index] = double3c(0, 1, 0);
else blockmean[threadIdx.x] = double3c(0,0,0);
__syncthreads();
然而,这仍然给我们留下了警告。修复此问题并使警告消失的修改方法是动态分配必要的__shared__
大小。将您的共享内存声明更改为:
extern __shared__ double3c blockmean[];
并修改内核调用:
KernelCalculateMeanFieldBlock <<<blocknum, THREADS_PER_BLOCK, THREADS_PER_BLOCK*sizeof(double3c)>>> (m, cu_mean);
这将消除警告,产生正确的结果,并避免共享内存变量上不必要的构造函数流量。 (并且不再需要上述额外的__syncthreads()
。)
*关于“不可预知的事情”,如果你通过检查生成的SASS(cuobjdump -sass ...)或PTX (**)(nvcc)来了解-ptx ...),您将看到每个线程将整个 __shared__
对象数组初始化为零(默认构造函数的行为)。因此,一些线程(即warp)可以向前竞争并开始根据这一行填充共享内存区域:
if (index < m.size_x * m.size_y * m.size_z) blockmean[threadIdx.x] = m.data[index] = double3c(0, 1, 0);
然后,当其他warp开始执行时,这些线程将再次清除整个共享内存数组。这种竞赛行为导致不可预测的结果。
**我通常不建议通过检查PTX来判断代码行为,但在这种情况下它同样具有指导意义。最终的编译阶段不会优化构造函数的行为。