我尝试使用parallel::mclapply
来加快以下代码的计算:
library(raster)
library(HistogramTools)#for AddHistogram
#Create a first h here for the first band... omitted for brevity
readNhist <- function(n,mconst) {
l <- raster(filename[i], varname=var[i], band=n, na.rm=T)
gain(l) <- mconst
h <<- AddHistograms(h, hist(l, plot=F, breaks=histbreaks,right=FALSE))
}
lapply( 1:10000, readNhist, mconst=1, mc.cores=7 )
#Then do stuff with the h histogram...
执行上述代码时,一切都很好。如果使用mclapply(下面),结果距离我想要获得的距离数英里:直方图都是错误的。
library(raster)
library(HistogramTools)#for AddHistogram
library(parallel)
#Create a first h here for the first band... omitted for brevity
readNhist <- function(n,mconst) {
l <- raster(filename[i], varname=var[i], band=n, na.rm=T)
gain(l) <- mconst
h <<- AddHistograms(h, hist(l, plot=F, breaks=histbreaks,right=FALSE))
}
mclapply( 2:10000, readNhist, mconst=1 )
#Then do stuff with the h histogram...
我觉得在这个函数中应用并行计算时我缺少了一些重要的东西。
答案 0 :(得分:1)
问题是<<-
,就我而言,这是一个不好的做法。
这个功能可以重新排列:
readNhist <- function(n,mconst) {
l <- raster(filename, varname=var, band=n, na.rm=T)
gain(l) <- mconst
hist <- hist(l, plot=F, breaks=histbreaks,right=FALSE)
return(hist)
}
并且这样称呼:
hists <- mclapply( 2:nbands, readNhist, mconst=gain, mc.cores=ncores )
ch <- AddHistograms(x=hists)
h <- AddHistograms(h, ch)
rm(ch, hists)
即使有大量的图层(以及直方图),这也非常快。