如何正确优化负二项式?

时间:2014-11-20 14:06:20

标签: r optimization

我在优化负二项式时遇到了一些问题。我总是得到同样的错误。我尝试使用积极的起始值,但这并没有解决问题

initial value in 'vmmin' is not finite

我做了什么:

  1. 我定义了对数似然

    sum(lgamma((theta/(sigma2 - 1)) + 1) - lgamma(outcome+1) -lgamma(theta/(sigma2 -1))  + outcome*log((sigma2-1)/sigma2) -   (theta/(sigma2 - 1)) *log(sigma2))
    
  2. 我将整个功能定义如下。这似乎运行:

    ll.negbin <- function(par, covariates, outcome){
    if(!all(covariates[,1] == 1))# here I add intercept{
    covariates <- as.matrix(cbind(1,covariates))}
    theta <- covariates%*%par[1:ncol(covariates)]
    gamma <- par[(ncol(covariates)+1)]
    sigma2 <- exp(gamma)+1
    out <- sum(lgamma((theta/(sigma2 - 1)) + 1) - lgamma(outcome+1) -lgamma(theta/(sigma2 -1)) + outcome*log((sigma2-1)/sigma2) -   (theta/(sigma2 - 1)) *log(sigma2))
    }
    
  3. 使用optim优化:

    opt.negbin <- optim(par = rep(0, ncol(data[,2:6]) + 1),# here you can  put your in.var. inside
    fn = ll.negbin,
    covariates = data[,2:6], # here you can put your columns of in.var.(,2:6).
    outcome = data$,         # here you can put your dependent variable
    control = list(fnscale = -1),
    hessian = T,
    method = "BFGS")
    

0 个答案:

没有答案