Rust与Clojure速度的比较,Clojure代码的任何改进?

时间:2014-11-20 07:35:12

标签: clojure rust

我将一段Rust代码示例翻译成了Clojure。

Rust(命令性和功能性)注意:为了清楚起见,这里的命令和功能代码都在一起。在测试中,我单独运行它们。

// The `AdditiveIterator` trait adds the `sum` method to iterators
use std::iter::AdditiveIterator;
use std::iter;  
    fn main() {
    println!("Find the sum of all the squared odd numbers under 1000");
    let upper = 1000u;

    // Imperative approach
    // Declare accumulator variable
    let mut acc = 0;
    // Iterate: 0, 1, 2, ... to infinity
    for n in iter::count(0u, 1) {
        // Square the number
        let n_squared = n * n;

        if n_squared >= upper {
            // Break loop if exceeded the upper limit
            break;
        } else if is_odd(n_squared) {
            // Accumulate value, if it's odd
            acc += n_squared;
        }
    }
    println!("imperative style: {}", acc);

    // Functional approach
    let sum_of_squared_odd_numbers =
        // All natural numbers
        iter::count(0u, 1).
        // Squared
        map(|n| n * n).
        // Below upper limit
        take_while(|&n| n < upper).
        // That are odd
        filter(|n| is_odd(*n)).
        // Sum them
        sum();
    println!("functional style: {}", sum_of_squared_odd_numbers);
}

fn is_odd(n: uint) -> bool {
    n % 2 == 1
}  

Rust(势在必行)时间:

~/projects/rust_proj $> time ./hof_imperative 
Find the sum of all the squared odd numbers under 1000
imperative style: 5456

real    0m0.006s
user    0m0.001s
sys 0m0.004s

~/projects/rust_proj $> time ./hof_imperative 
Find the sum of all the squared odd numbers under 1000
imperative style: 5456

real    0m0.004s
user    0m0.000s
sys 0m0.004s

~/projects/rust_proj $> time ./hof_imperative 
Find the sum of all the squared odd numbers under 1000
imperative style: 5456

real    0m0.005s
user    0m0.004s
sys 0m0.001s

Rust(功能)时间:

~/projects/rust_proj $> time ./hof 
Find the sum of all the squared odd numbers under 1000
functional style: 5456

real    0m0.007s
user    0m0.001s
sys 0m0.004s

~/projects/rust_proj $> time ./hof 
Find the sum of all the squared odd numbers under 1000
functional style: 5456

real    0m0.007s
user    0m0.007s
sys 0m0.000s

~/projects/rust_proj $> time ./hof 
Find the sum of all the squared odd numbers under 1000
functional style: 5456

real    0m0.007s
user    0m0.004s
sys 0m0.003s

Clojure的:

(defn sum-square-less-1000 []
  "Find the sum of all the squared odd numbers under 1000
"
  (->> (iterate inc 0)
       (map (fn [n] (* n n)))
       (take-while (partial > 1000))
       (filter odd?)
       (reduce +)))

Clojure时间:

user> (time (sum-square-less-1000))
"Elapsed time: 0.443562 msecs"
5456
user> (time (sum-square-less-1000))
"Elapsed time: 0.201981 msecs"
5456
user> (time (sum-square-less-1000))
"Elapsed time: 0.4752 msecs"
5456

问题:

  1. Clojure中(reduce +)(apply +)的区别是什么?
  2. 这个Clojure代码是惯用法吗?
  3. 我可以得出结论:速度:Clojure&gt;锈事命令&gt;生锈功能? Clojure在这里真的让我感到惊讶。

2 个答案:

答案 0 :(得分:4)

如果查看+的来源,您会发现(reduce +)(apply +)对于更高的参数计数是相同的。 (apply +)已针对1或2个参数版本进行了优化。

(range)在大多数情况下会比(iterate inc 0)快得多。

partial比简单的匿名函数慢,并且应该保留用于您不知道将提供多少args的情况。

显示使用标准的基准测试结果,我们可以看到应用这些更改会使执行时间减少36%:

user> (crit/bench (->> (iterate inc 0)
                       (map (fn [n] (* n n)))
                       (take-while (partial > 1000))
                       (filter odd?)
                       (reduce +)))
WARNING: Final GC required 2.679748643529675 % of runtime
Evaluation count : 3522840 in 60 samples of 58714 calls.
             Execution time mean : 16.954649 µs
    Execution time std-deviation : 140.180401 ns
   Execution time lower quantile : 16.720122 µs ( 2.5%)
   Execution time upper quantile : 17.261693 µs (97.5%)
                   Overhead used : 2.208566 ns

Found 2 outliers in 60 samples (3.3333 %)
    low-severe   2 (3.3333 %)
 Variance from outliers : 1.6389 % Variance is slightly inflated by outliers
nil
user> (crit/bench (->> (range)
                       (map (fn [n] (* n n)))
                       (take-while #(> 1000 %))
                       (filter odd?)
                       (reduce +)))
Evaluation count : 5521440 in 60 samples of 92024 calls.
             Execution time mean : 10.993332 µs
    Execution time std-deviation : 118.100723 ns
   Execution time lower quantile : 10.855536 µs ( 2.5%)
   Execution time upper quantile : 11.238964 µs (97.5%)
                   Overhead used : 2.208566 ns

Found 2 outliers in 60 samples (3.3333 %)
    low-severe   1 (1.6667 %)
    low-mild     1 (1.6667 %)
 Variance from outliers : 1.6389 % Variance is slightly inflated by outliers
nil

答案 1 :(得分:2)

在我看来,Clojure代码看起来很惯用,但是它做了很多不必要的工作。这是另一种方式。

(reduce #(+ %1 (* %2 %2)) 0 (range 1 32 2))


user=> (time (reduce #(+ %1 (* %2 %2)) 0 (range 1 32 2)))
"Elapsed time: 0.180778 msecs"
5456
user=> (time (reduce #(+ %1 (* %2 %2)) 0 (range 1 32 2)))
"Elapsed time: 0.255972 msecs"
5456
user=> (time (reduce #(+ %1 (* %2 %2)) 0 (range 1 32 2)))
"Elapsed time: 0.346192 msecs"
5456
user=> (time (reduce #(+ %1 (* %2 %2)) 0 (range 1 32 2)))
"Elapsed time: 0.162615 msecs"
5456
user=> (time (reduce #(+ %1 (* %2 %2)) 0 (range 1 32 2)))
"Elapsed time: 0.257901 msecs"
5456
user=> (time (reduce #(+ %1 (* %2 %2)) 0 (range 1 32 2)))
"Elapsed time: 0.175507 msecs"
5456

尽管如此,你无法确定一个比另一个更快。基准测试是一项棘手的游戏。您需要在具有大量输入的类似生产的环境中测试您的程序,以获得任何有意义的结果。

  

Clojure中(reduce +)和(apply +)的区别是什么?

apply是具有变量arity的高阶函数。它的第一个参数是变量arity的函数,需要一堆干预args,然后最后一个arg必须是args列表。它的工作原理是首先将干预args输入args列表,然后将args传递给函数。

示例:

(apply + 0 1 2 3 '(4 5 6 7))
=> (apply + '(0 1 2 3 4 5 6 7))
=> (+ 0 1 2 3 4 5 6 7)
=> result

关于reduce,我认为文档清楚地说明了

user=> (doc reduce)
-------------------------
clojure.core/reduce
([f coll] [f val coll])
  f should be a function of 2 arguments. If val is not supplied,
  returns the result of applying f to the first 2 items in coll, then
  applying f to that result and the 3rd item, etc. If coll contains no
  items, f must accept no arguments as well, and reduce returns the
  result of calling f with no arguments.  If coll has only 1 item, it
  is returned and f is not called.  If val is supplied, returns the
  result of applying f to val and the first item in coll, then
  applying f to that result and the 2nd item, etc. If coll contains no
  items, returns val and f is not called.
nil

在某些情况下,您可以使用apply f collreduce f coll,但我通常在apply具有变量arity时使用f,而在reduce时使用f {1}}是一个2-ary函数。