我已经测试了两个不同的视觉感知测试的大量参与者样本 - 现在,我想看看两个测试的性能在多大程度上相关。
为了可视化相关性,我使用ggplot()
在R中绘制散点图,我拟合回归线(使用stat_smooth()
)。但是,由于我的x
和y
变量都是性能指标,因此我需要在拟合回归线时考虑这两个因素 - 因此,我不能使用简单的线性回归(使用{{1而且需要适合正交回归(或总最小二乘)。我该怎么做呢?
我知道我可以在stat_smooth(method="lm")
中指定formula
,但我不知道要使用哪种公式。据我所知,没有任何预设方法(stat_smooth()
)适用。
答案 0 :(得分:4)
事实证明,您可以从(x,y)上的主成分分析中提取斜率和截距,如图here所示。这只是稍微简单一点,在基数R中运行,并且在Deming(...)
中使用MethComp
给出了相同的结果。
# same `x and `y` as @user20650's answer
df <- data.frame(y, x)
pca <- prcomp(~x+y, df)
slp <- with(pca, rotation[2,1] / rotation[1,1])
int <- with(pca, center[2] - slp*center[1])
ggplot(df, aes(x,y)) +
geom_point() +
stat_smooth(method=lm, color="green", se=FALSE) +
geom_abline(slope=slp, intercept=int, color="blue")
答案 1 :(得分:2)
我认为您应该能够将slope
和intercept
传递给geom_abline
以生成拟合线。或者,您可以定义自己的方法以传递给stat_smooth
(如链接smooth.Pspline wrapper for stat_smooth (in ggplot2)所示)。我根据How to calculate Total least squares in R? (Orthogonal regression)建议使用了Deming
包中的MethComp
函数。
library(MethComp)
library(ggplot2)
# Sample data and model (from ?Deming example)
set.seed(1)
M <- runif(100,0,5)
# Measurements:
x <- M + rnorm(100)
y <- 2 + 3 * M + rnorm(100,sd=2)
# Deming regression
mod <- Deming(x,y)
# Define functions to pass to stat_smooth - see mnel's answer at link for details
# Defined the Deming model output as class Deming to define the predict method
# I only used the intercept and slope for predictions - is this correct?
f <- function(formula,data,SDR=2,...){
M <- model.frame(formula, data)
d <- Deming(x =M[,2],y =M[,1], sdr=SDR)[1:2]
class(d) <- "Deming"
d
}
# an s3 method for predictdf (called within stat_smooth)
predictdf.Deming <- function(model, xseq, se, level) {
pred <- model %*% t(cbind(1, xseq) )
data.frame(x = xseq, y = c(pred))
}
ggplot(data.frame(x,y), aes(x, y)) + geom_point() +
stat_smooth(method = f, se= FALSE, colour='red', formula=y~x, SDR=1) +
geom_abline(intercept=mod[1], slope=mod[2], colour='blue') +
stat_smooth(method = "lm", se= FALSE, colour='green', formula = y~x)
因此将截距和斜率传递给geom_abline
会产生相同的拟合线(如预期的那样)。所以如果这是正确的方法,那么就更容易理解这一点。
答案 2 :(得分:0)
MethComp
软件包似乎已不再维护(已从CRAN中删除)。
Russel88/COEF允许将stat_
/ geom_summary
与method="tls"
一起使用以添加正交回归线。
基于此和wikipedia:Deming_regression,我创建了以下函数,这些函数允许使用1:以外的噪声比。
deming.fit <- function(x, y, noise_ratio = sd(y)/sd(x)) {
if(missing(noise_ratio) || is.null(noise_ratio)) noise_ratio <- eval(formals(sys.function(0))$noise_ratio) # this is just a complicated way to write `sd(y)/sd(x)`
delta <- noise_ratio^2
x_name <- deparse(substitute(x))
s_yy <- var(y)
s_xx <- var(x)
s_xy <- cov(x, y)
beta1 <- (s_yy - delta*s_xx + sqrt((s_yy - delta*s_xx)^2 + 4*delta*s_xy^2)) / (2*s_xy)
beta0 <- mean(y) - beta1 * mean(x)
res <- c(beta0 = beta0, beta1 = beta1)
names(res) <- c("(Intercept)", x_name)
class(res) <- "Deming"
res
}
deming <- function(formula, data, R = 100, noise_ratio = NULL, ...){
ret <- boot::boot(
data = model.frame(formula, data),
statistic = function(data, ind) {
data <- data[ind, ]
args <- rlang::parse_exprs(colnames(data))
names(args) <- c("y", "x")
rlang::eval_tidy(rlang::expr(deming.fit(!!!args, noise_ratio = noise_ratio)), data, env = rlang::current_env())
},
R=R
)
class(ret) <- c("Deming", class(ret))
ret
}
predictdf.Deming <- function(model, xseq, se, level) {
pred <- as.vector(tcrossprod(model$t0, cbind(1, xseq)))
if(se) {
preds <- tcrossprod(model$t, cbind(1, xseq))
data.frame(
x = xseq,
y = pred,
ymin = apply(preds, 2, function(x) quantile(x, probs = (1-level)/2)),
ymax = apply(preds, 2, function(x) quantile(x, probs = 1-((1-level)/2)))
)
} else {
return(data.frame(x = xseq, y = pred))
}
}
# unrelated hlper function to create a nicer plot:
fix_plot_limits <- function(p) p + coord_cartesian(xlim=ggplot_build(p)$layout$panel_params[[1]]$x.range, ylim=ggplot_build(p)$layout$panel_params[[1]]$y.range)
演示:
library(ggplot2)
#devtools::install_github("Russel88/COEF")
library(COEF)
fix_plot_limits(
ggplot(data.frame(x = (1:5) + rnorm(100), y = (1:5) + rnorm(100)*2), mapping = aes(x=x, y=y)) +
geom_point()
) +
geom_smooth(method=deming, aes(color="deming"), method.args = list(noise_ratio=2)) +
geom_smooth(method=lm, aes(color="lm")) +
geom_smooth(method = COEF::tls, aes(color="tls"))
由reprex package(v0.3.0)于2019-12-04创建