我在Ubuntu 14.04上使用Apache Hadoop 2.5.0的单节点集群设置 我使用Flume在我的HDFS中存储了推文。 然后,我使用以下Hive命令在Hive中创建一个表格,以表格格式存储所有推文:
CREATE EXTERNAL TABLE tweets (
id BIGINT,
created_at STRING,
source STRING,
favorited BOOLEAN,
retweet_count INT,
retweeted_status STRUCT<
text:STRING,
user:STRUCT<screen_name:STRING,name:STRING>>,
entities STRUCT<
urls:ARRAY<STRUCT<expanded_url:STRING>>,
user_mentions:ARRAY<STRUCT<screen_name:STRING,name:STRING>>,
hashtags:ARRAY<STRUCT<text:STRING>>>,
text STRING,
user STRUCT<
screen_name:STRING,
name:STRING,
friends_count:INT,
followers_count:INT,
statuses_count:INT,
verified:BOOLEAN,
utc_offset:INT,
time_zone:STRING>,
in_reply_to_screen_name STRING
)
ROW FORMAT SERDE 'com.cloudera.hive.serde.JSONSerDe'
LOCATION '/user/flume/tweets';
我已经通过使用HiveQL(来自Hive命令行界面)查询数据库来验证表'tweets'中是否存在数据。我还使用以下命令创建了一个输出表:
CREATE TABLE outputtable (
a STRING,
b INT );
我正在使用已经有HCatalog的Apache Hive 0.13.1。毕竟,我试图在Eclipse中使用Java语言编写MapReduce作业。我已将以下库添加到我的项目中作为外部jar:
我的MapReduce代码试图从表'tweets'中导出推文的文本然后进行处理。我的MapReduce代码是:
import java.io.IOException;
import java.util.*;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.conf.*;
import org.apache.hadoop.io.*;
import org.apache.hadoop.mapreduce.*;
import org.apache.hadoop.util.*;
import org.apache.hcatalog.common.*;
import org.apache.hcatalog.mapreduce.*;
import org.apache.hcatalog.data.*;
import org.apache.hcatalog.data.schema.*;
public class UseHCat extends Configured implements Tool {
public static class Map extends Mapper<WritableComparable, HCatRecord, Text, IntWritable> {
String tweetText;
@Override
protected void map( WritableComparable key,
HCatRecord value,
org.apache.hadoop.mapreduce.Mapper<WritableComparable, HCatRecord,
Text, IntWritable>.Context context)
throws IOException, InterruptedException {
tweetText = (String) value.get(7);
int i = 1;
context.write(new Text(tweetText), new IntWritable(i));
}
}
public static class Reduce extends Reducer<Text, IntWritable,
WritableComparable, HCatRecord> {
protected void reduce( Text key,
java.lang.Iterable<IntWritable> values,
org.apache.hadoop.mapreduce.Reducer<Text, IntWritable,
WritableComparable, HCatRecord>.Context context)
throws IOException, InterruptedException {
Iterator<IntWritable> iter = values.iterator();
IntWritable iw = iter.next();
int id = iw.get();
HCatRecord record = new DefaultHCatRecord(2);
record.set(0, key.toString());
record.set(1, id);
context.write(null, record);
}
}
public int run(String[] args) throws Exception {
Configuration conf = getConf();
String inputTableName = "tweets";
String outputTableName = "outputtable";
String dbName = null;
Job job = new Job(conf, "UseHCat");
HCatInputFormat.setInput(job, InputJobInfo.create(dbName, inputTableName, null));
job.setJarByClass(UseHCat.class);
job.setMapperClass(Map.class);
job.setReducerClass(Reduce.class);
// An HCatalog record as input
job.setInputFormatClass(HCatInputFormat.class);
// Mapper emits a string as key and an integer as value
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(IntWritable.class);
// Ignore the key for the reducer output; emitting an HCatalog record as value
job.setOutputKeyClass(WritableComparable.class);
job.setOutputValueClass(DefaultHCatRecord.class);
job.setOutputFormatClass(HCatOutputFormat.class);
HCatOutputFormat.setOutput(job, OutputJobInfo.create(dbName, outputTableName, null));
HCatSchema s = HCatOutputFormat.getTableSchema(job);
System.err.println("INFO: output schema explicitly set for writing:" + s);
HCatOutputFormat.setSchema(job, s);
return (job.waitForCompletion(true) ? 0 : 1);
}
public static void main(String[] args) throws Exception {
int exitCode = ToolRunner.run(new UseHCat(), args);
System.exit(exitCode);
}
}
我们面临的第一个问题是我们收到很多警告,指出某些类型和构造函数已被弃用。我们忽略了警告并创建了我们项目的jar文件,其主要类是“UseHCat”。然后我们使用Ubuntu中提供的终端浏览到创建jar文件的位置,并运行以下命令:
hadoop jar MyProject.jar
我们收到以下错误:
14/11/16 17:17:29 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
Exception in thread "main" java.lang.NoClassDefFoundError: org/apache/hadoop/hive/ql/metadata/HiveStorageHandler
at java.lang.ClassLoader.defineClass1(Native Method)
at java.lang.ClassLoader.defineClass(ClassLoader.java:800)
at java.security.SecureClassLoader.defineClass(SecureClassLoader.java:142)
at java.net.URLClassLoader.defineClass(URLClassLoader.java:449)
at java.net.URLClassLoader.access$100(URLClassLoader.java:71)
at java.net.URLClassLoader$1.run(URLClassLoader.java:361)
at java.net.URLClassLoader$1.run(URLClassLoader.java:355)
at java.security.AccessController.doPrivileged(Native Method)
at java.net.URLClassLoader.findClass(URLClassLoader.java:354)
at java.lang.ClassLoader.loadClass(ClassLoader.java:425)
at sun.misc.Launcher$AppClassLoader.loadClass(Launcher.java:308)
at java.lang.ClassLoader.loadClass(ClassLoader.java:358)
at org.apache.hcatalog.mapreduce.InitializeInput.getInputJobInfo(InitializeInput.java:146)
at org.apache.hcatalog.mapreduce.InitializeInput.setInput(InitializeInput.java:86)
at org.apache.hcatalog.mapreduce.HCatInputFormat.setInput(HCatInputFormat.java:86)
at org.apache.hcatalog.mapreduce.HCatInputFormat.setInput(HCatInputFormat.java:55)
at org.apache.hcatalog.mapreduce.HCatInputFormat.setInput(HCatInputFormat.java:47)
at UseHCat.run(UseHCat.java:64)
at org.apache.hadoop.util.ToolRunner.run(ToolRunner.java:70)
at org.apache.hadoop.util.ToolRunner.run(ToolRunner.java:84)
at UseHCat.main(UseHCat.java:91)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:606)
at org.apache.hadoop.util.RunJar.main(RunJar.java:212)
Caused by: java.lang.ClassNotFoundException: org.apache.hadoop.hive.ql.metadata.HiveStorageHandler
at java.net.URLClassLoader$1.run(URLClassLoader.java:366)
at java.net.URLClassLoader$1.run(URLClassLoader.java:355)
at java.security.AccessController.doPrivileged(Native Method)
at java.net.URLClassLoader.findClass(URLClassLoader.java:354)
at java.lang.ClassLoader.loadClass(ClassLoader.java:425)
at sun.misc.Launcher$AppClassLoader.loadClass(Launcher.java:308)
at java.lang.ClassLoader.loadClass(ClassLoader.java:358)
... 26 more
答案 0 :(得分:0)
开发Hive是为了最小化写入mapreduce程序。您可以使用Hive查询执行该过程,在内部它将转换为mapreduce作业。
但是,如果要访问Hivedb数据,则可以访问。 Hive不是数据库。以可读格式存储在仓库目录下的所有数据。您可以将完整路径作为mapreduce程序的输入。
您是否在eclipse中尝试了一个示例mapreduce程序。因为您已经构建了Hadoop插件,或者您可以使用eclipse中的现有插件来运行mapreduce。