我有以下数据,其中xx和yy之间似乎存在曲线关系:
head(ddf)
xx yy
1 1 10
2 2 9
3 3 11
4 4 9
5 5 7
6 6 6
ddf = structure(list(xx = 1:23, yy = c(10L, 9L, 11L, 9L, 7L, 6L, 9L,
8L, 5L, 4L, 6L, 6L, 5L, 4L, 6L, 8L, 4L, 6L, 8L, 11L, 8L, 10L,
9L)), .Names = c("xx", "yy"), class = "data.frame", row.names = c(NA,
-23L))
with(ddf, plot(xx,yy))
我想分析一下并得到以下内容:
我知道nls,它给了我一个等式,但我必须输入一个公式,这可能不正确。此外,我无法得到曲线和R和P值。
> nls(yy~a*(xx^b), data=ddf)
Nonlinear regression model
model: yy ~ a * (xx^b)
data: ddf
a b
9.5337 -0.1184
residual sum-of-squares: 95.85
Number of iterations to convergence: 8
Achieved convergence tolerance: 3.407e-06
Warning message:
In nls(yy ~ a * (xx^b), data = ddf) :
No starting values specified for some parameters.
Initializing ‘a’, ‘b’ to '1.'.
Consider specifying 'start' or using a selfStart model
我也知道ggplot的stat_smooth可以绘制曲线。但这也没有给我公式,R和P值。
答案 0 :(得分:5)
您可以预测新xx
值范围内的值并绘制它们。关于你想要的结果:
# 1. Find the nonlinear relation between xx and yy
fit <- nls(yy ~ a*xx^b, data=ddf)
# 2. Get its equation
coef(fit)
# 3. Get its P value
summary(fit)
# 4. If possible get R (correlation coefficient) (nonlinear)
cor(predict(fit), ddf$yy)
# 5. Plot this curve
newdat <- data.frame(xx=seq(min(ddf$xx), max(ddf$xx),,100))
newdat$yy <- predict(fit, newdat)
plot(yy ~ xx, ddf)
lines(yy ~ xx, newdat, col=2)
这是使用多项式的另一个选项:
# 1. Find the nonlinear relation between xx and yy
fit <- lm(yy ~ poly(xx, n=2, raw=TRUE), data=ddf)
# 2. Get its equation
coef(fit)
# 3. Get its P value
summary(fit)
# 4. If possible get R (correlation coefficient) (nonlinear)
cor(predict(fit), ddf$yy)
# 5. Plot this curve
newdat <- data.frame(xx=seq(min(ddf$xx), max(ddf$xx),,100))
newdat$yy <- predict(fit, newdat)
plot(yy ~ xx, ddf)
lines(yy ~ xx, newdat, col=2)
最后,GAM版本:
# 1. Find the nonlinear relation between xx and yy
library(mgcv)
fit <- gam(yy ~ s(xx), data=ddf)
# 2. Get its equation
coef(fit)
# 3. Get its P value
summary(fit)
# 4. If possible get R (correlation coefficient) (nonlinear)
cor(predict(fit), ddf$yy)
# 5. Plot this curve
newdat <- data.frame(xx=seq(min(ddf$xx), max(ddf$xx),,100))
newdat$yy <- predict(fit, newdat)
plot(yy ~ xx, ddf)
lines(yy ~ xx, newdat, col=2)
您可以从GAM模型的系数中看出,这是一个更大的模型,更难以在公式中表示。但是,你的形式有很大的灵活性,如果这是最好的关系,它应该减少(即通过较少数量的&#34;结和#34;)到线性模型。