使用Spark KMeans算法打印ClusterID及其元素。

时间:2014-11-14 21:39:28

标签: apache-spark k-means apache-spark-mllib

我有这个程序在apache-spark上打印Kmeans算法的MSSE。生成了20个集群。我正在尝试打印clusterID和分配给各个clusterID的元素。如何循环clusterID以打印元素。

谢谢你们!!

           val sc = new SparkContext("local", "KMeansExample","/usr/local/spark/", List("target/scala-2.10/kmeans_2.10-1.0.jar"))
            // Load and parse the data
            val data = sc.textFile("kmeans.csv")
         val parsedData = data.map( s => Vectors.dense(s.split(',').map(_.toDouble)))

        // Cluster the data into two classes using KMeans
        val numIterations = 20
        val numClusters = 20
        val clusters = KMeans.train(parsedData, numClusters, numIterations)
        val clusterCenters = clusters.clusterCenters map (_.toArray)
        println("The Cluster Centers are = " + clusterCenters)
        // Evaluate clustering by computing Within Set Sum of Squared Errors
        val WSSSE = clusters.computeCost(parsedData)
        println("Within Set Sum of Squared Errors = " + WSSSE)

1 个答案:

答案 0 :(得分:3)

我知道你应该为每个元素运行预测。

    KMeansModel clusters = KMeans.train(parsedData.rdd(), numClusters, numIterations);

    List<Vector> vectors = parsedData.collect();
    for(Vector vector: vectors){
        System.out.println("cluster "+clusters.predict(vector) +" "+vector.toString());
    }