我需要帮助将我的长度数据1558810 x 84转换为1558810 x 4784的广泛数据
让我详细解释一下如何以及为何。我的原始数据如下 - 数据有三个主要栏目 -
id empId dept
1 a social
2 a Hist
3 a math
4 b comp
5 a social
6 b comp
7 c math
8 c Hist
9 b math
10 a comp
id是唯一的密钥,用于指示哪一名员工每天去哪所大学的哪个部门。我需要将其转换如下。
id empId dept social Hist math comp
1 a social 1 0 0 0
2 a Hist 0 1 0 0
3 a math 0 0 1 0
4 b comp 0 0 0 1
5 a social 1 0 0 0
6 b comp 0 0 0 1
7 c math 0 0 1 0
8 c Hist 0 1 0 0
9 b math 0 0 1 0
10 a comp 0 0 0 1
我有两个数据集,一个有49k行,另一个有155万行。对于具有1100个唯一部门值的较小数据集,我在reshape2包中使用dcast来获取所需的数据集(因此,转换后的数据将具有3 + 1100列和49k行)。但是当我在具有4700个唯一部门值的较大数据集上使用相同的函数时,我的R因内存问题而崩溃。我试过varous其他替代品,如xtabs,reshape等,但每次因内存错误而失败。
我现在为此目的使用粗略的FOR循环 -
columns <- unique(ds$dept)
for(i in 1:length(unique(ds$dept)))
{
ds[,columns[i]] <- ifelse(ds$dept==columns[i],1,0)
}
但这非常慢,代码现在已经运行了10个小时。是否有任何解决方法,我缺少?
任何建议都会有很大的帮助!
答案 0 :(得分:3)
你可以尝试
df$dept <- factor(df$dept, levels=unique(df$dept))
res <- cbind(df, model.matrix(~ 0+dept, df))
colnames(res) <- gsub("dept(?=[A-Za-z])", "", colnames(res), perl=TRUE)
res
# id empId dept social Hist math comp
#1 1 a social 1 0 0 0
#2 2 a Hist 0 1 0 0
#3 3 a math 0 0 1 0
#4 4 b comp 0 0 0 1
#5 5 a social 1 0 0 0
#6 6 b comp 0 0 0 1
#7 7 c math 0 0 1 0
#8 8 c Hist 0 1 0 0
#9 9 b math 0 0 1 0
#10 10 a comp 0 0 0 1
或者你可以试试
cbind(df, as.data.frame.matrix(table(df[,c(1,3)])))
或使用data.table
library(data.table)
setDT(df)
dcast.data.table(df, id + empId + dept ~ dept, fun=length)
或使用qdap
library(qdap)
cbind(df, as.wfm(with(df, mtabulate(setNames(dept, id)))))
df <- structure(list(id = 1:10, empId = c("a", "a", "a", "b", "a",
"b", "c", "c", "b", "a"), dept = c("social", "Hist", "math",
"comp", "social", "comp", "math", "Hist", "math", "comp")), .Names = c("id",
"empId", "dept"), class = "data.frame", row.names = c(NA, -10L))
答案 1 :(得分:0)
尝试:
> cbind(dd[1:3], dcast(dd, dd$id~dd$dept, length)[-1])
Using dept as value column: use value.var to override.
id empId dept comp Hist math social
1 1 a social 0 0 0 1
2 2 a Hist 0 1 0 0
3 3 a math 0 0 1 0
4 4 b comp 1 0 0 0
5 5 a social 0 0 0 1
6 6 b comp 1 0 0 0
7 7 c math 0 0 1 0
8 8 c Hist 0 1 0 0
9 9 b math 0 0 1 0
10 10 a comp 1 0 0 0
数据:
> dput(dd)
structure(list(id = 1:10, empId = structure(c(1L, 1L, 1L, 2L,
1L, 2L, 3L, 3L, 2L, 1L), .Label = c("a", "b", "c"), class = "factor"),
dept = structure(c(4L, 2L, 3L, 1L, 4L, 1L, 3L, 2L, 3L, 1L
), .Label = c("comp", "Hist", "math", "social"), class = "factor")), .Names = c("id",
"empId", "dept"), class = "data.frame", row.names = c("1", "2",
"3", "4", "5", "6", "7", "8", "9", "10"))