这是一个像这样的时间序列数据,称之为df:
'No' 'Date' 'Value'
0 600000 1999-11-10 1
1 600000 1999-11-11 1
2 600000 1999-11-12 1
3 600000 1999-11-15 1
4 600000 1999-11-16 1
5 600000 1999-11-17 1
6 600000 1999-11-18 0
7 600000 1999-11-19 1
8 600000 1999-11-22 1
9 600000 1999-11-23 1
10 600000 1999-11-24 1
11 600000 1999-11-25 0
12 600001 1999-11-26 1
13 600001 1999-11-29 1
14 600001 1999-11-30 0
我希望连续'Value'的日期范围为1,那么如何得到最终结果如下:
'No' 'BeginDate' 'EndDate' 'Consecutive'
0 600000 1999-11-10 1999-11-17 6
1 600000 1999-11-19 1999-11-24 4
2 600001 1999-11-26 1999-11-29 2
答案 0 :(得分:16)
这应该这样做
df['value_grp'] = (df.Values.diff(1) != 0).astype('int').cumsum()
每当Value更改时,value_grp将递增1。下面,您可以提取组结果
pd.DataFrame({'BeginDate' : df.groupby('value_grp').Date.first(),
'EndDate' : df.groupby('value_grp').Date.last(),
'Consecutive' : df.groupby('value_grp').size(),
'No' : df.groupby('value_grp').No.first()}).reset_index(drop=True)
答案 1 :(得分:1)
这是另一种解决方案:
In [225]: %paste
rslt = (df.assign(Consecutive=df.Value
.groupby((df.Value != df.Value.shift())
.cumsum())
.transform('size'))
.query('Consecutive > 1')
.groupby('Consecutive')
.agg({'No':{'No':'first'}, 'Date': {'BeginDate':'first', 'EndDate':'last'}})
.reset_index()
)
rslt.columns = [t[1] if t[1] else t[0] for t in rslt.columns]
## -- End pasted text --
In [226]: rslt
Out[226]:
Consecutive BeginDate EndDate No
0 2 1999-11-26 1999-11-29 600001
1 4 1999-11-19 1999-11-24 600000
2 6 1999-11-10 1999-11-17 600000
<强>演示:强>
control