我正在尝试使用R中的“提取”功能,它允许进行策略情绪分析(文档可以在这里找到:http://www.unc.edu/~jstimson/Software_files/Doc.pdf)。然而,我的所有案例都被丢弃了,我无法弄清楚数据或函数是否是问题。
以下是一个示例数据集,其中包含执行该函数所需的代码(“extract”功能代码包含在下面):
library(car)
#create sample data frame
mat <- matrix(, nrow = 10, ncol = 0)
mat <- as.data.frame(mat)
mat$year <- c(1998,1999,2000,2001,2002,1996,1997,1998,2000,2002) #survey years
mat$varname <- c("ESS","ESS","ESS","ESS","ESS","ISSP","ISSP","ISSP","ISSP","ISSP") #survey names
mat$index <- c(10,20,30,20,30,10,20,30,20,10) #approval rating in survey
mat$ncases <- c(1000,1120,1300,800,1000,1200,1300,1400,1100,1000) #number of survey respondents
source("Extract.r") #loading Extract for estimating Mood
mat$date<-ISOdate(mat$year,1,1) #generate date variable
output<-extract(mat$varname,mat$date,mat$index,mat$ncases) #estimate mood series
最后一行返回以下内容:
[1] "Series ESS discarded. After aggregation cases = 0"
[1] "Series ISSP discarded. After aggregation cases = 0"
Error in issue[, v] : subscript out of bounds
所以这些调查都被淘汰,因为在汇总时无法使用。我最好的猜测,看下面的功能代码,是由于具有不可计算或零标准偏差而被删除的情况 - 但我不明白为什么会出现这种情况。
最后,这是该函数的Extract.r代码。我相信可能导致问题的代码块从“#NOW REDUCE ISUUE MATRIX消除不可用系列(WN&lt; 2)”开始:
display<-function(out,filename=NULL) {
if (is.null(filename)) filename=""
d<-out$dimensions
p<-out$period
m<-out$latent1
if (d==2) m2<-out$latent2
T<-out$T
mo=100*(p-as.integer(p))
for (t in 1:T) {
yr<-format(as.integer(p[t]),nsmall=0)
month<-format(mo[t],digits=2)
lat1<-format(m[t],nsmall=3)
if (d==1) {
cat(c(yr,month,lat1),fill=TRUE,file=filename,append=TRUE)
} else {
lat2<-format(m2[t],nsmall=3)
cat(c(yr,month,lat1,lat2),fill=TRUE,file=filename,append=TRUE)
}
}
}
##########################################################################################
plot.Zextract<-function(outobject) {
dim<- outobject$dimensions
T<- outobject$T
vect1<-outobject$latent1
t<-seq(1:T)
if (dim>1) {
vect2<-outobject$latent2
miny<-min(vect1)
if (miny>min(vect2)) miny<-min(vect2)
maxy<-max(vect1)
if (maxy<max(vect2)) maxy<-max(vect2)
dummy<-rep(miny,T-1) #dummy is a fake variable used to reset axes to handle min/max of both series
dummy[T]<-maxy
leg.text<-c("","Dimension 1","Dimension 2")
plot(t,dummy,type="l",lty=0,main="Final Estimation Results: Two Dimensions",xlab="Time Point",ylab="Latent Variables")
lines(t,vect1,col=1)
lines(t,vect2,col=2)
legend(1,maxy,leg.text,col=c(0,1,2),lty=c(0,1,1))
} else {
plot(t,vect1,type="l",main="Final Estimation Results",xlab="Time Point",ylab="Latent Variable")
if (dim == 2) lines(t,vect2,col=2)
}
}
##########################################################################################
summary.Zextract<- function(outobject) {
T=outobject$T
nvar=outobject$nvar
dim<- outobject$dimensions
vn<- c(outobject$varname,"Variable Name")
vn<- format(vn,justify="right")
nc<- format(outobject$N,justify="right")
ld<- format(outobject$loadings1,digits=3,justify="right")
mean<- format(outobject$means,digits=6,justify="right")
sd<- format(outobject$std.deviations,digits=6,justify="right")
cat("Variable Loadings and Descriptive Information: Dimension 1\n")
cat(paste(vn[nvar+1],"Cases","Loading"," Mean ","Std Dev","\n"))
for (v in 1:nvar) {
cat(paste(vn[v]," ",nc[v]," ",ld[v],mean[v],sd[v],"\n"))
}
if (dim == 2) {
ld<- format(outobject$loadings2,digits=3,justify="right")
cat("\nVariable Loadings and Descriptive Information: Dimension 2\n")
cat(paste(vn[nvar+1],"Cases","Loading"," Mean ","Std Dev","\n"))
for (v in 1:nvar) {
cat(paste(vn[v]," ",nc[v]," ",ld[v],mean[v],sd[v],"\n"))
}
}
}
##########################################################################################
findper<-function(unit,curdate,mind,miny,minper,aggratio) { #returns intFindPer
datcurdate<-curdate
class(datcurdate)<-"Date"
mo <- findmonth(datcurdate)
qu <- 1 + as.integer((mo - 1)/3)
dy <- findday(datcurdate)
yr <- findyear(datcurdate)
arinv<- 1/aggratio
if (unit == "D") intFindPer <- curdate - mind +1 #curdate - mindate + 1
if (unit == "A" || unit == "O") intFindPer <- as.integer((yr - miny) / aggratio) + 1
if (unit == "Q") part <- qu
if (unit == "M") part <- mo
if (unit == "Q" || unit == "M") intFindPer <- (yr - miny - 1) * arinv + part + (arinv - (minper - 1))
return(intFindPer)
} #findper
##########################################################################################
findday<-function(DateVar) {
z<-as.POSIXlt(DateVar)
v<-unlist(z)
findday<-as.integer(v[4])
} #end findday
##########################################################################################
findmonth<-function(DateVar) {
z<-as.POSIXlt(DateVar)
v<-unlist(z)
findmonth<-as.integer(v[5])+1
} #end findmonth
##########################################################################################
findyear<-function(DateVar) {
z<-as.POSIXlt(DateVar)
v<-unlist(z)
findyear<-as.integer(v[6])+1900
} #end findyear
##########################################################################################
aggregate<- function(varname,date,index,ncases,mindate,maxdate,nperiods,nvar,aggratio,unit,miny,minper) { #
#READ A NEW RECORD, CALCULATE PERIOD, AND SET UP AGGREGATION INTO MAT.ISSUE[NPERIODS,NVAR]
vl<- character(nvar)
mind<- as.integer(mindate)/86400
maxd<- as.integer(maxdate)/86400
vfac<- factor(varname) #make a factor vector
vlev<- levels(vfac) #find unique categories
Mat.Issue<- array(dim=c(nperiods,nvar))
nrec<-length(varname) #added for R compatibility
lp<- 0
per<- 0
x<- 0
c<- 0
nkeep<- 0
lv<- "0"
for (record in 1:nrec) { # MASTER LOOP THROUGH INPUT DATA, 1 TO NREC
if (ncases[record] == 0 || is.na(ncases[record])) ncases[record] <- 1000
mo <- findmonth(date[record])
qu <- 1 + as.integer((mo - 1)/3)
dy <- findday(date[record])
yr <- findyear(date[record])
curdate<- as.integer(date[record])
if (curdate >= mind && curdate <= maxd) { #is date within range?
nkeep <- nkeep + 1
if (nkeep==1) { #startup routine for first good case
firstcase<- TRUE
lp <- findper(unit,curdate,mind,miny,minper,aggratio)
lv <- varname[record]
x <- index[record] * ncases[record] #start new sums for case 1
c <- ncases[record]
for (i in 1:nvar) {
if (lv==vlev[i]) v=i #determine v by matching to position of labels vector
} #end for
} else {
firstcase<- FALSE
} #end if
if (firstcase == FALSE) { #skip over the rest for first good case
per<- findper(unit,curdate,mind,miny,minper,aggratio) #here we translate date into agg category
if ((varname[record] != lv) || (per !=lp)) { #found a new period or variable name
if (lp > 0 && lp <= nperiods) {
Mat.Issue[lp, v] <- x / c #recompute for either period or var change
x<- 0
c<- 0
}
if (varname[record] != lv) { #new var only
for (i in 1:nvar) {
if (varname[record]==vlev[i]) v=i #determine v by matching to position of labels vector
} #end for
vl[v]<- varname[record] #this will only catch names that have good cases
lv<-vl[v] #reassign new varname to lastvar
} # new var
lp <- findper(unit,curdate,mind,miny,minper,aggratio)
x <- index[record] * ncases[record] #start new sums for current case
c <- ncases[record]
} else {
x<- x + index[record] * ncases[record] #a continuing case, increment sums
c<- c + ncases[record]
}
} # end of first case special loop
} #end of date test loop
} #newrec: next record
vl<- vlev #overwrite previous assignment which had good names only
agglist<- list(lab=vl,iss=Mat.Issue)
return(agglist) #list includes labels and issue matrix
} #end aggregate function
##########################################################################################
esmooth<- function(mood, fb, alpha){
##########################################################################################
smooth<- function(alpha) { #for time series "series" and alpha "alpha[1]" compute sum of squared forecast error
ferror<- numeric(1)
T<- length(series)
xvect<- numeric(T)
xvect[1] <- series[1]
for (t in 2:T) {
xvect[t] <- alpha[1] * series[t] + (1 - alpha[1]) * xvect[t - 1]
}
sumsq <- 0
for (t in 3:T) {
ferror <- series[t] - xvect[t - 1]
sumsq <- sumsq + ferror ^ 2
}
return(sumsq) #this is the value of the function for a particular parameter alpha[1]
} # END OF FUNCTION SMOOTH
##########################################################################################
series<- mood[fb,] #create series to be smoothed
sm.out<- optim(c(.75),smooth,method="L-BFGS-B",lower=0.5,upper=1) #call smoother
alpha<- sm.out$par #assign result to alpha
#NOW SMOOTH USING ALPHA
T<- length(series)
for (t in 2:T) {
mood[fb,t] <- alpha * series[t] + (1 - alpha) * mood[fb,t - 1]
}
return(alpha)
} #END OF FUNCTION ESMOOTH
##########################################################################################
residmi<- function(issue,v,mood) { #function regresses issue(v) on mood and then residualizes it
o<- lm(issue[,v] ~ mood[3,]) #regress issue on mood to get a,b
issue[,v]<- 100 + issue[,v] - (o$coef[1]+o$coef[2]*mood[3,]) #100 + Y - (a+bx)
return(issue[,v])
}
##########################################################################################
iscorr<- function(issue,mood) { #compute issue-scale correlations
Nv<- length(issue[1,])
Np<- length(issue[,1])
Rvector<- numeric(Nv)
for (v in 1:Nv) {
N<- Np - sum(is.na(issue[,v]))
if (N > 1) Rvector[v]<- cor(issue[,v],mood[3,],use="complete.obs",method="pearson")
}
return(Rvector)
} #end function iscorr
##########################################################################################
dominate<- function(fb,issue,nperiods,nvar,mood,valid,smoothing,alpha) {
nitems<- numeric(nperiods)
if (fb==2) alpha1<-alpha
if (fb==1) {
unexp<-numeric(1)
everlap<- integer(1)
alpha<- 1
alpha1<- 1
}
if (fb == 1) {
startper <- 1
mood[fb, startper] <- 100
firstj <- 2
lastj <- nperiods
stepj <- 1
jprev <- 1
} else {
startper <- nperiods
mood[fb, startper] <- mood[1, nperiods] #reuse forward metric
firstj <- nperiods - 1
lastj <- 1
stepj <- -1
jprev <- nperiods
} # end if
for (j in seq(firstj,lastj,by=stepj)) {
mood[fb, j] <- 0
everlap <- 0 ## of years which have contributed sums to mood
if (fb == 1) {
firstj2 <- 1
lastj2 <- j - 1
} else {
firstj2 <- j + 1
lastj2 <- nperiods
} # end if
for (j2 in firstj2:lastj2) {
sum <- 0 #has already been estimated
consum <- 0 #sum of communalities across issues
overlap <- 0
for (v in 1:nvar) {
xj <- issue[j, v] #xj is base year value
sngx2 <- issue[j2, v] #sngx2 is comparison year value
if (!is.na(xj) && !is.na(sngx2)) {
overlap <- overlap + 1 #numb of issues contributing to sum
ratio <- xj / sngx2
if (csign[v] < 0) ratio <- 1 / ratio
sum <- sum + valid[v] * ratio * mood[fb, j2]
consum <- consum + valid[v]
} # end if
} #next v
if (overlap > 0) {
everlap <- everlap + 1
mood[fb, j] <- mood[fb, j] + sum / consum
} # end if
} #next j2
nitems[j] <- everlap
if (everlap > 0) mood[fb, j] <- mood[fb, j] / everlap else mood[fb, j] <- mood[fb, jprev] #if undefined, set to lag(mood)
jprev <- j #last value of j, whether lead or lag
} #next j
if (smoothing == TRUE) {
alpha<- esmooth(mood, fb, alpha) #NOW SMOOTH USING ALPHA
mood.sm<- mood[fb,] #set up alternate vector mood.sm
for (t in 2:nperiods) {
mood.sm[t]<- alpha*mood[fb,t]+(1-alpha)*mood.sm[t-1]
} #end for
mood[fb,]<- mood.sm #now assign back smoothed version
} else {
alpha1 <- 1
alpha <- 1
}
if (smoothing == TRUE && fb == 1) alpha1 <- alpha
dominate.out<- list(alpha1=alpha1,alpha=alpha,latent=mood[fb,]) #output object
return(dominate.out)
# return(mood[fb,])
} #end dominate algorithm
##########################################################################################
#begindt<-NA #ISOdate(2004,6,1)
#enddt<-NA #ISOdate(2004,10,31)
##########################################################################################
## MAIN EXTRACT CODE BEGINS HERE #########################################################
extract<- function(varname,date,index,ncases=NULL,unit="A",mult=1,begindt=NA,enddt=NA,npass=1,smoothing=TRUE,endmonth=12) {
formula<-match.call(extract)
nrecords<- length(varname)
if (is.null(ncases)) ncases<- rep(0,nrecords)
moddate<- date #create temporary date vector, leaving original unmodified
if ((unit=="A" || unit=="O") && endmonth<12) {
for (i in 1:nrecords) { #first loop through raw data file
month<- findmonth(moddate[i])
year<- findyear(moddate[i])
if (month>endmonth) moddate[i]<- ISOdate(year+1,1,1) #modified date become 1/1 of next year
} #end loop through data
} # end if
if (is.na(begindt)) minper<-findmonth(min(moddate)) else minper<-findmonth(begindt)
if (is.na(begindt)) miny<-findyear(min(moddate)) else miny<-findyear(begindt)
if (is.na(begindt)) minday<-findday(min(moddate)) else minday<-findday(begindt)
if (is.na(enddt)) maxper<-findmonth(max(moddate)) else maxper<-findmonth(enddt)
if (is.na(enddt)) maxy<-findyear(max(moddate)) else maxy<-findyear(enddt)
if (is.na(enddt)) maxday<-findday(max(moddate)) else maxday<-findday(enddt)
if (unit=="Q") {
minper<- as.integer((minper-1)/3)+1
maxper<- as.integer((maxper-1)/3)+1
}
mindate<- ISOdate(miny,minper,minday,0,0,0,tz="GMT")
maxdate<- ISOdate(maxy, maxper, maxday,0,0,0,tz="GMT") #86400=24*60*60
#SETCONS:
latent<- numeric(1)
aggratio<- 0
fb<- 1 #initialize
auto<- "start" #meaningless value
alpha<- 1
alpha1<- 1
pass<- 1
holdtola<- 0.001
tola<- holdtola
iter<- 0
lastconv<- 99999
wtmean<- 0 #for it=1
wtstd<- 1
fract<- 1
if (unit=="A") {
nperiods<- maxy-miny+1
aggratio<- 1
months<- 12
}
if (unit=="O") {
years<- mult
months<- years*12
aggratio<- 2
odd<- (maxy-miny+1) %% mult #mod
nperiods=as.integer((maxy-miny)/mult) + odd
}
if (unit=="M") {
fract<- 100
nperiods<- (maxy-miny)*12
nperiods<- nperiods-12 + (12-minper+1) + maxper
aggratio<- 1/12
months<- 1
}
if (unit=="Q") {
aggratio<- 1/4
months<- 3
nperiods<- as.integer((maxy-miny)/aggratio)
nperiods<- nperiods-4 + (4-minper+1) + maxper
fract<- 10
}
if (unit=="D") {
months=1
nperiods<- (as.integer(maxdate)-as.integer(mindate))/86400 + 1 #86400=24*60*60
}
arinv<- 1/aggratio
aggratio<- months/12
nrecords<- length(index)
#HERE WE SET UP FUNDAMENTAL DIMENSIONS AND DECLARE VECTORS
if (fb != 2) mood<- array(dim=c(3,nperiods))
vfac<- factor(varname) #make a factor vector
vlev<- levels(vfac) #find unique categories
nvar<- length(vlev) #how many are there?, includes unusable series
valid<- numeric(nvar)
csign<<- numeric(nvar)
vl<- character(nvar)
r<- numeric(nvar)
oldr<- rep(1,nvar) # r=1 for all v initially
issue<- array(dim=c(nperiods,nvar))
count<- numeric(nperiods)
vl<- numeric(nvar)
period<- numeric(nperiods)
converge<- 0
evalue<- 0
# create numeric variable period, eg, yyyy.0m
if (unit=="D") {
period<-seq(1:nperiods)
} else {
if (months >= 12) {
for (l in 1:nperiods) {
p <- (l - 1) * aggratio
period[l] <- miny + p
} #next l
} else {
y <- 0
i <- 0
my <- miny
if (minper == 1) my <- my - 1
for (l in 1:nperiods) {
i<- 1 + ((l-1) %% arinv)
mq <- minper + i - 1
mq<- 1 + ((mq-1) %% arinv)
if (mq == 1) y <- y + 1 #first month or quarter, increment year
period[l] <- my + y + mq / fract
} # end for
} #end else
} # end if
agglist<- aggregate(varname,moddate,index,ncases,mindate,maxdate,nperiods,nvar,aggratio,unit,miny,minper) # call aggregate to produce issue matrix
vl<- agglist$lab #extract two elements of the list from aggregate call
issue<- agglist$iss
rm(agglist) #don't need this anymore
#NOW REDUCE ISSUE MATRIX TO ELIMINATE UNUSABLE SERIES (WN<2)
ndrop<- 0
nissue<- numeric(nperiods)
std<- numeric(nperiods)
for (v in 1:nvar) {
std[v]<- 0 #default
nissue[v]<- sum(!is.na(issue[,v])) #criterion is 2 cases for npass=1 or 3 for npass=2
if (nissue[v]>npass) std[v]<- sqrt(var(issue[,v],na.rm=TRUE)) #this is just a test for variance >0
if (std[v]<.001) { #case dropped if std uncomputable (NA) or actually zero (constant)
ndrop<- ndrop+1
print(paste("Series",vl[v],"discarded. After aggregation cases =",nissue[v]))
}
}
nvarold<- nvar
nvar<- nvar-ndrop
pointer<- 1
found<- FALSE
for (v in 1:nvar) { #now reduced nvar
while (found==FALSE && pointer<=nvarold) { #find first valid column and push down
if (std[pointer]>.001) { #good case, transfer
issue[,v]<- issue[,pointer]
vl[v]<- vl[pointer]
pointer<- pointer+1
found<- TRUE
} else {
pointer<- pointer+1 #bad case, increment pointer
} #end if
} #end while
found<- FALSE
} #for
length(vl)<- nvar #reduce
length(issue)<- nperiods*nvar #chop off unused columns
attr(issue,"dim")<- c(nperiods,nvar)
N<- numeric(nvar)
#export<<-list(nperiods,nvar,issue)
for (pass in 1:npass) { #newpass: RESTART FOR SECOND DIMENSION CASE
if (pass == 2) { #reset iteration control parameters
iter <- 0
tola = holdtola
lastconv <- 99999
converge<- lastconv
conv<- converge
} else {
av<- numeric(nvar)
std<- numeric(nvar)
# ngood<- 0
for (v in 1:nvar) { #compute av and std by issue nvar now reduced to good cases
wn<- as.integer(nperiods-sum(is.na(issue[,v])))
av[v] <- mean(issue[,v],na.rm=TRUE)
std[v]<- sqrt(var(issue[,v],na.rm=TRUE) * ((wn - 1)/wn)) #convert to population standard deviation
issue[,v]<- 100 + 10 * (issue[,v] - av[v])/std[v] #standardize
# ngood<- ngood+1
}#end for
}
#READY FOR ESTIMATION, SET UP AND PRINT OPTIONS INFO
out<- as.character(10) #initial length only
out[1]<- print(paste("Estimation report:"))
if (pass == 1) {
if (months >= 12) {
out[2]<- print(paste("Period:", miny, " to", maxy," ", nperiods, " time points"))
} else {
out[2]<- print(paste("Period:", miny, minper, " to", maxy, maxper, nperiods, " time points"))
}
out[3]<- print(paste("Number of series: ", nvar+ndrop))
out[4]<- print(paste("Number of usable series: ", nvar))
out[5]<- print(paste("Exponential smoothing: ",smoothing))
}
out[6]<- print(paste("Iteration history: Dimension ",pass))
print(" ")
out[7]<- print("Iter Convergence Criterion Reliability Alphaf Alphab")
outcount<- 7
for (p in 1:nperiods) {
count[p]<- sum(!is.na(issue[p,]))
}
valid<- rep(1,times=nvar)
csign<<- rep(1,times=nvar)
auto <- "y" #iterative estimation on by default
quit <- 0 #false implies go ahead and estimate
while (iter == 0 || converge > tola) { #MASTER CONTROL LOOP WHICH ITERATES UNTIL SOLUTION REACHED
for (fb in 1:2) { # MASTER fb LOOP fb=1 is forward, 2 backward
dominate.out<- dominate(fb,issue,nperiods,nvar,mood,valid,smoothing,alpha) #master estimation routine
alpha1<- dominate.out$alpha1
alpha<- dominate.out$alpha
mood[fb,]<- dominate.out$latent
} #next fb
fb <- 3 #average mood from here on
for (p in 1:nperiods) { # AVERAGE
mood[fb, p] <- (mood[1, p] + mood[2, p]) / 2
} #next p
moodmean<-mean(mood[3,])
sdmood<-sd(mood[3,])
for (p in 1:nperiods) { #PLACEMENT OF THIS LOOP MAY NOT BE RIGHT
mood[fb,p] <- ((mood[fb,p] - moodmean) * wtstd / sdmood) + wtmean
} #end for
#plot commands
t<- seq(1:nperiods) #time counter used for plot below
lo<- 50 #force scale of iterative plot to large range
hi<- 150
if (min(mood[3,]) < lo) lo=min(mood[3,]) #whichever larger, use
if (max(mood[3,]) > hi) hi=max(mood[3,])
dummy<- rep(lo,nperiods) #dummy is fake variable used to set plot y axis to 50,150
dummy[nperiods]<- hi
if (iter==0) {
plot(t,dummy,type="l",lty=0,xlab="Time Period",ylab="Estimate by iteration",main="Estimated Latent Dimension") #create box, no visible lines
} else {
lines(t,mood[3,],col=iter)
}
iter <- iter + 1
if (auto == "y") r<- iscorr(issue,mood) else auto <- "y" #recompute correlations
wtmean<- 0
wtstd<- 0
vsum<- 0
goodvar<- 0
converge<- 0 #start off default
evalue<- 0
totalvar<- 0
for (v in 1:nvar) {
wn<- nperiods-sum(is.na(issue[,v]))
if (!is.na(sign(r[v]))) csign[v]<<- sign(r[v])
wn<- nperiods-sum(is.na(issue[,v]))
if (wn>1) { #sum over variables actually used
vratio <- wn / nperiods
evalue <- evalue + vratio * r[v]^2
totalvar <- totalvar + vratio
} #end if
#convergence tests
if (wn > 3) {
conv <- abs(r[v] - oldr[v]) #conv is convergence test for item=v
conv <- conv * (wn / nperiods) #weight criterion by number of available periods
if (conv > converge) converge <- conv #converge is the global max of conv
} #end if
if (!is.na(r[v])) oldr[v] <- r[v]
if (!is.na(r[v])) valid[v] <- r[v]^2
if (!is.na(av[v])) wtmean <- wtmean + av[v] * valid[v]
if (!is.na(std[v])) wtstd <- wtstd + std[v] * valid[v]
if (!is.na(r[v])) vsum <- vsum + valid[v]
} #end v loop
if (vsum > 0) wtmean <- wtmean / vsum
if (vsum > 0) wtstd <- wtstd / vsum
if (pass == 1) {
mean1 <- wtmean
std1 <- wtstd
e1=evalue
} else {
wtmean <- mean1
wtstd <- std1 #*unexp
} #end if
fbcorr <- cor(mood[1,],mood[2,]) #fnfrontback
if (quit != 1) {
outcount<- outcount+1
cv<- format(round(converge,4),nsmall=4)
itfmt<-format(round(iter),justify="right",length=4)
out[outcount]<- print(paste(itfmt," ",cv," ",round(tola,4)," ",round(fbcorr,3),round(alpha1,4),round(alpha,4)))
}
if (converge > lastconv) tola <- tola * 2
lastconv <- converge
auto = "y" #skip corr on iter=1, set auto on
if (iter >= 50) break #get out of while loop
} #END MASTER WHILE ITERATION CONTROL LOOP
if (auto == "y" && converge<tola) { #IF WE REACH THIS CODE WE HAVE A FINAL SOLUTION TO BE REPORTED
if (pass == 1) out1<- out #hold output for 2 dimensional solution
auto <- "Q"
quit <- 1 #flag solution reached, last time through
r<- iscorr(issue,mood) #final iteration correlations
if (pass == 1) r1<- r #hold correlations for 2 dimensional solution
if (pass > 1) {
unexp <- totalvar
totalvar <- unexp * totalvar
evalue <- evalue * unexp
} # end if
if (pass == 1) {
expprop <- evalue / totalvar
tot1 <- totalvar
} else {
erel <- evalue / totalvar #% exp relative
totalvar <- (1 - expprop) * tot1 #true var=original var discounted by %exp
evalue <- erel * totalvar #rescale to retain %exp relationship
expprop <- evalue / tot1 #now reduce eral to expprop
} # end if
for (v in 1:nvar) {
N[v]<- sum(!is.na(issue[,v]))
}
var.out<- list(varname=vl,loadings=r,means=av,std.deviations=std)
print(" ")
outcount<- outcount+1
out[outcount]<- print(paste("Eigen Estimate ", round(evalue,2), " of possible ",round(tot1,2)))
outcount<- outcount+1
out[outcount]<- print(paste(" Percent Variance Explained: ",round(100 * expprop,2)))
if (pass != 2 && npass>1) {
for (v in 1:nvar) {
valid[v] <- 0 #reset all, regmoodissue will set good=1
if (csign[v] != 0) issue[,v]<- residmi(issue,v,mood) #regmoodissue()
} #v loop
} # if
#begin prn output routine # mood[fb,] is now our estimate, WHAT ABOUT A SECOND DIMENSION
latent<- mood[fb,] #vector holds values for output
if (pass == 1) latent1<- latent #hold first dimension
print(" ")
out[outcount+1]<- print(paste("Final Weighted Average Metric: Mean: ",round(wtmean,2)," St. Dev: ",round(wtstd,2)))
#for Zelig output
if (npass==1) {
extract.out<- list(formula=formula,T=nperiods,nvar=nvar,unit=unit,dimensions=npass,period=period,varname=vl,N=N,means=av,std.deviations=std,setup1=out1,loadings1=r1,latent1=latent1)
} else {
for (i in 6:outcount) {
out[i-5]=out[i]
}
length(out)<- outcount-5
extract.out<- list(formula=formula,T=nperiods,nvar=nvar,unit=unit,dimensions=npass,period=period,varname=vl,N=N,means=av,std.deviations=std,setup1=out1,loadings1=r1,latent1=latent1,setup2=out,loadings2=r,latent2=latent)
}
} #end if auto="y"
} #end of for pass=1,2 loop
par(col=1) #reset on termination
class(extract.out)<- "Zextract"
return(extract.out)
} #end of extract
任何人都有任何想法在这里出了什么问题?提前感谢您的时间!
答案 0 :(得分:1)
这里的问题似乎是aggregate
函数内的日期(注意,不是基础R aggregate
)。即,最小和最大日期计算如下:
mind<- as.integer(mindate)/86400
maxd<- as.integer(maxdate)/86400
然后使用curdate
语句将它们(在每个日期的循环内)与if
变量进行比较:
if (curdate >= mind && curdate <= maxd) { #is date within range?
但问题是,curdate<- as.integer(date[record])
(if
语句之前的行)不在同一时间范围内。将其更改为:curdate<- as.integer(date[record])/86400
似乎可以解决问题。