我正在尝试使用Reshape包重塑我的数据。我很难重塑它。如果你能帮助我,我将非常感激。
数据如下:
structure(list(ID = 1:3, group = 1:3, v1 = c(1L, 1L, 1L), v2 = c(1L, 1L, 0L), v1.1 = 1:3, v2.1 = c(1L, 1L, 1L), v1.2 = c(1L, 0L, 1L ), v2.2 = c(0L, 1L, 1L), v1.3 = c(1L, 1L, 1L), v2.3 = c(1L, 1L, 1L)), .Names = c("ID", "group", "v1", "v2", "v1.1", "v2.1", "v1.2", "v2.2", "v1.3", "v2.3"), class = "data.frame", row.names = c(NA, -3L))
ID group X1 X2 X3 X4
ID group v1 v2 v1 v2 v1 v2 v1 v2
1 1 1 1 1 1 1 0 1 1
2 2 1 1 2 1 0 1 1 1
3 3 1 0 3 1 1 1 1 1
我想要这样的数据。非常感谢您的帮助
ID group X v1 v2
1 1 1 1 1
1 1 2 1 1
1 1 3 1 0
1 1 4 1 1
2 2 1 1 1
2 2 2 2 1
2 2 3 0 1
2 2 4 1 1
3 3 1 1 0
3 3 2 3 1
3 3 3 1 1
3 3 4 1 1
答案 0 :(得分:2)
这似乎有效。
df <- structure(list(ID = 1:3, group = 1:3, v1 = c(1L, 1L, 1L), v2 = c(1L, 1L, 0L), v1.1 = 1:3, v2.1 = c(1L, 1L, 1L), v1.2 = c(1L, 0L, 1L ), v2.2 = c(0L, 1L, 1L), v1.3 = c(1L, 1L, 1L), v2.3 = c(1L, 1L, 1L)), .Names = c("ID", "group", "v1", "v2", "v1.1", "v2.1", "v1.2", "v2.2", "v1.3", "v2.3"), class = "data.frame", row.names = c(NA, -3L))
result <- reshape(df,idvar=1:2,
varying=list(c(3,5,7,9),c(4,6,8,10)),
timevar="X",
direction="long")
result <- with(result,result[order(ID,group,X),])
result
# ID group X v1 v2
# 1.1.1 1 1 1 1 1
# 1.1.2 1 1 2 1 1
# 1.1.3 1 1 3 1 0
# 1.1.4 1 1 4 1 1
# 2.2.1 2 2 1 1 1
# 2.2.2 2 2 2 2 1
# 2.2.3 2 2 3 0 1
# 2.2.4 2 2 4 1 1
# 3.3.1 3 3 1 1 0
# 3.3.2 3 3 2 3 1
# 3.3.3 3 3 3 1 1
# 3.3.4 3 3 4 1 1
通常情况下,我建议在melt(...)
包中添加reshape2
,但有一组“值”列(v1
和v2
),这可能是更快。
答案 1 :(得分:1)
您可以尝试{&#34; splitstackshape&#34;}中的merged.stack
包,您可以这样申请:
library(splitstackshape)
merged.stack(
df, var.stubs = c("v1", "v2"),
sep = "var.stubs")[, .time_1 := NULL][, ind := sequence(.N),
by = c("ID", "group")][]
# ID group v1 v2 ind
# 1: 1 1 1 1 1
# 2: 1 1 1 1 2
# 3: 1 1 1 0 3
# 4: 1 1 1 1 4
# 5: 2 2 1 1 1
# 6: 2 2 2 1 2
# 7: 2 2 0 1 3
# 8: 2 2 1 1 4
# 9: 3 3 1 0 1
# 10: 3 3 3 1 2
# 11: 3 3 1 1 3
# 12: 3 3 1 1 4
或者,在同一个包中,有Reshape
,它是一个试图简化基础R reshape()
使用的包装器。从长远来看,它会慢于merged.stack
。
要使用它,首先要重命名名为&#34; v1&#34;的列。和&#34; v2&#34;到&#34; v1.0&#34;和&#34; v2.0&#34;:
setnames(df, c("v1", "v2"), c("v1.0", "v2.0"))
Reshape(df, var.stubs = c("v1", "v2"), sep = ".")
# ID group time v1 v2
# 1: 1 1 1 1 1
# 2: 2 2 1 1 1
# 3: 3 3 1 1 0
# 4: 1 1 2 1 1
# 5: 2 2 2 2 1
# 6: 3 3 2 3 1
# 7: 1 1 3 1 0
# 8: 2 2 3 0 1
# 9: 3 3 3 1 1
# 10: 1 1 4 1 1
# 11: 2 2 4 1 1
# 12: 3 3 4 1 1
另一种选择(因为你似乎坚持使用&#34; reshape2&#34;解决方案)是首先melt
数据,然后对数据进行一些修改以使其为{{1}做好准备}}
这是方法(从原始&#34; dcast
&#34;数据开始,而不是我们重新命名上述列的数据):
df
你必须增加&#34;时间&#34;列,如果您想要在问题中显示的输出完全相同。
答案 2 :(得分:0)
尝试:
nddf = data.frame(ID=numeric(), group=numeric(), x=numeric(), v1=numeric(), v2=numeric())
for(i in 1:nrow(ddf)){
nddf[nrow(nddf)+1,]=c(ddf[i,'ID'], ddf[i,'group'], 1, ddf[i,3], ddf[i,4])
nddf[nrow(nddf)+1,]=c(ddf[i,'ID'], ddf[i,'group'], 2, ddf[i,5], ddf[i,6])
nddf[nrow(nddf)+1,]=c(ddf[i,'ID'], ddf[i,'group'], 3, ddf[i,7], ddf[i,8])
nddf[nrow(nddf)+1,]=c(ddf[i,'ID'], ddf[i,'group'], 4, ddf[i,9], ddf[i,10])
}
nddf
ID group x v1 v2
1 1 1 1 1 1
2 1 1 2 1 1
3 1 1 3 1 0
4 1 1 4 1 1
5 2 2 1 1 1
6 2 2 2 2 1
7 2 2 3 0 1
8 2 2 4 1 1
9 3 3 1 1 0
10 3 3 2 3 1
11 3 3 3 1 1
12 3 3 4 1 1