我正在使用 scikit-learn 从多个文本文档构建 ngrams 。我需要使用 countVectorizer 构建文档频率。
示例:
document1 = "john is a nice guy"
document2 = "person can be a guy"
所以,文档频率将是
{'be': 1,
'can': 1,
'guy': 2,
'is': 1,
'john': 1,
'nice': 1,
'person': 1}
这里的文档只是字符串,但是当我尝试大量数据时。它会抛出 MEMORY ERROR。
代码:
import numpy as np
from sklearn.feature_extraction.text import CountVectorizer
document = [Huge amount of data around 7MB] # ['john is a guy', 'person guy']
vectorizer = CountVectorizer(ngram_range=(1, 5))
X = vectorizer.fit_transform(document).todense()
tranformer = vectorizer.transform(document).todense()
matrix_terms = np.array(vectorizer.get_feature_names())
lst_freq = map(sum,zip(*tranformer.A))
matrix_freq = np.array(lst_freq)
final_matrix = np.array([matrix_terms,matrix_freq])
错误:
Traceback (most recent call last):
File "demo1.py", line 13, in build_ngrams_matrix
X = vectorizer.fit_transform(document).todense()
File "/usr/local/lib/python2.7/dist-packages/scipy/sparse/base.py", line 605, in todense
return np.asmatrix(self.toarray(order=order, out=out))
File "/usr/local/lib/python2.7/dist-packages/scipy/sparse/compressed.py", line 901, in toarray
return self.tocoo(copy=False).toarray(order=order, out=out)
File "/usr/local/lib/python2.7/dist-packages/scipy/sparse/coo.py", line 269, in toarray
B = self._process_toarray_args(order, out)
File "/usr/local/lib/python2.7/dist-packages/scipy/sparse/base.py", line 789, in _process_toarray_args
return np.zeros(self.shape, dtype=self.dtype, order=order)
MemoryError
答案 0 :(得分:9)
正如评论所提到的,当您将大型稀疏矩阵转换为密集格式时,您会遇到内存问题。尝试这样的事情:
import numpy as np
from sklearn.feature_extraction.text import CountVectorizer
document = [Huge amount of data around 7MB] # ['john is a guy', 'person guy']
vectorizer = CountVectorizer(ngram_range=(1, 5))
# Don't need both X and transformer; they should be identical
X = vectorizer.fit_transform(document)
matrix_terms = np.array(vectorizer.get_feature_names())
# Use the axis keyword to sum over rows
matrix_freq = np.asarray(X.sum(axis=0)).ravel()
final_matrix = np.array([matrix_terms,matrix_freq])
编辑:如果您需要从字词到频率的词典,请在致电fit_transform
后尝试此操作:
terms = vectorizer.get_feature_names()
freqs = X.sum(axis=0).A1
result = dict(zip(terms, freqs))