我有一个形状为(480, 640, 3)
的三维数组(图像)。这里,3指的是BGR
颜色代码。我想使用红色图像数组中的数据在此图像上放置一个遮罩。根据其值,需要屏蔽某些像素。
创建蒙版工作正常。它的行为完全符合预期。为了将蒙版应用于原始图像,我首先将蒙版应用于蓝色和绿色图像。一切都还好。现在我堆叠三个蒙版数组,返回一个形状为(480, 640, 3)
的数组。但是,使用imshow
绘制此数组会生成原始图像。没有任何面具的迹象。
下面我把我的代码。该代码适用于任何图像大小/形状。您需要做的就是将名称"Whatever_image_you_like.png"
更改为您电脑上任何图像的名称。
import numpy
import numpy.ma
import scipy.misc
import matplotlib.pyplot as plt
pixel_value = 130 #Value in range 0 to 255
image = scipy.misc.imread("Whatever_image_you_like.png")
#Extract Blue, Green, and Red image from original image
image_B = numpy.copy(image[:, :, 0])
image_G = numpy.copy(image[:, :, 1])
image_R = numpy.copy(image[:, :, 2])
#Define mask depending on pixel value in Red image
image_mask = numpy.empty([image.shape[0], image.shape[1]], dtype = bool)
image_mask[image_R < pixel_value] = False
#Apply mask to Blue, Green, and Red images
B_masked = numpy.ma.masked_array(image_B, mask = ~image_mask)
G_masked = numpy.ma.masked_array(image_G, mask = ~image_mask)
R_masked = numpy.ma.masked_array(image_R, mask = ~image_mask)
#Stack masked images together again
masked_image = numpy.ma.dstack((B_masked, G_masked, R_masked))
#Plot original image and masked version
fig = plt.figure()
ax1 = fig.add_subplot(2, 1, 1)
ax1.imshow(image)
ax2 = fig.add_subplot(2, 1, 2)
ax2.imshow(masked_image)
plt.show()
我做错了什么?有没有更好的方法来解决这个问题?
答案 0 :(得分:3)
尝试使用与image
形状相同的蒙版(实际上,这将是一个3D蒙版)。生成image_mask
后,请执行
# create mask with same dimensions as image
mask = numpy.zeros_like(image)
# copy your image_mask to all dimensions (i.e. colors) of your image
for i in range(3):
mask[:,:,i] = image_mask.copy()
# apply the mask to your image
masked_image = image[mask]
这样我暂时避免使用numpy中的蒙版数组。
答案 1 :(得分:0)
在类似情况下,这种替代方法可能会更容易:
AndroidManifest.xml