编写一个程序,用于在表达式中查找重复的括号。 例如:
(( a + b ) + (( c + d ))) = a + b + c + d
(( a + b ) * (( c + d ))) = (a + b) * (c + d)
我所知道的一种方法涉及以下两个步骤:
我不想完成从一个表示转换为另一个表示的整个过程,然后将其转换回来。
我想使用堆栈(但是一次性完成)。有可能吗?
请建议算法或分享代码。
答案 0 :(得分:5)
您可以使用recursive descent parser。这隐式使用函数调用堆栈,但不显式使用Java堆栈。它可以实现如下:
public class Main {
public static void main(String[] args) {
System.out.println(new Parser("(( a + b ) + (( c + d )))").parse());
System.out.println(new Parser("(( a + b ) * (( c + d )))").parse());
}
}
public class Parser {
private final static char EOF = ';';
private String input;
private int currPos;
public Parser(String input) {
this.input = input + EOF; // mark the end
this.currPos = -1;
}
public String parse() throws IllegalArgumentException {
nextToken();
Result result = expression();
if(currToken() != EOF) {
throw new IllegalArgumentException("Found unexpected character '" + currToken() + "' at position " + currPos);
}
return result.getText();
}
// "expression()" handles "term" or "term + term" or "term - term"
private Result expression() throws IllegalArgumentException {
Result leftArg = term();
char operator = currToken();
if (operator != '+' && operator != '-') {
return leftArg; // EXIT
}
nextToken();
Result rightArg = term();
if(operator == '-' && (rightArg.getOp() == '-' || rightArg.getOp() == '+')) {
rightArg = encloseInParentheses(rightArg);
}
return new Result(leftArg.getText() + " " + operator + " " + rightArg.getText(), operator);
}
// "term()" handles "factor" or "factor * factor" or "factor / factor"
private Result term() throws IllegalArgumentException {
Result leftArg = factor();
char operator = currToken();
if (operator != '*' && operator != '/') {
return leftArg; // EXIT
}
nextToken();
Result rightArg = factor();
if(leftArg.getOp() == '+' || leftArg.getOp() == '-') {
leftArg = encloseInParentheses(leftArg);
}
if(rightArg.getOp() == '+' || rightArg.getOp() == '-' || (operator == '/' && (rightArg.getOp() == '/' || rightArg.getOp() == '*'))) {
rightArg = encloseInParentheses(rightArg);
}
return new Result(leftArg.getText() + " " + operator + " " + rightArg.getText(), operator);
}
// "factor()" handles a "paren" or a "variable"
private Result factor() throws IllegalArgumentException {
Result result;
if(currToken() == '(') {
result = paren();
} else if(Character.isLetter(currToken())) {
result = variable();
} else {
throw new IllegalArgumentException("Expected variable or '(', found '" + currToken() + "' at position " + currPos);
}
return result;
}
// "paren()" handles an "expression" enclosed in parentheses
// Called with currToken an opening parenthesis
private Result paren() throws IllegalArgumentException {
nextToken();
Result result = expression();
if(currToken() != ')') {
throw new IllegalArgumentException("Expected ')', found '" + currToken() + "' at position " + currPos);
}
nextToken();
return result;
}
// "variable()" handles a variable
// Called with currToken a variable
private Result variable() throws IllegalArgumentException {
Result result = new Result(Character.toString(currToken()), ' ');
nextToken();
return result;
}
private char currToken() {
return input.charAt(currPos);
}
private void nextToken() {
if(currPos >= input.length() - 1) {
throw new IllegalArgumentException("Unexpected end of input");
}
do {
++currPos;
}
while(currToken() != EOF && currToken() == ' ');
}
private static Result encloseInParentheses(Result result) {
return new Result("(" + result.getText() + ")", result.getOp());
}
private static class Result {
private final String text;
private final char op;
private Result(String text, char op) {
this.text = text;
this.op = op;
}
public String getText() {
return text;
}
public char getOp() {
return op;
}
}
}
如果要使用显式堆栈,可以使用类似于Result
内部类的堆栈将算法从递归堆栈转换为迭代堆栈。
实际上,Java编译器/ JVM将每个递归算法转换为基于堆栈的算法,将局部变量放到堆栈上。
但递归正常的解析器很容易被人类阅读,因此我更喜欢上面提到的解决方案。
答案 1 :(得分:3)
如果您只关心重复括号(因为问题似乎暗示),而不是由于运算符优先级而被视为必要的(正如其他答案似乎暗示的那样),您确实可以使用堆栈跟踪你遇到的括号,并确定每对括号的任何非空格非括号字符都很重要,这样就可以使用堆栈进行更简单的迭代遍历:
public class BracketFinder {
public List<BracketPair> findUnnecessaryBrackets(String input) {
List<BracketPair> unneccessaryBrackets = new LinkedList<BracketPair>();
Deque<BracketPair> bracketStack = new LinkedBlockingDeque<BracketPair>();
for (int cursor = 0; cursor < input.length(); cursor++ ) {
if (input.charAt(cursor) == '(') {
BracketPair pair = new BracketPair(cursor);
bracketStack.addLast(pair);
} else if (input.charAt(cursor) == ')') {
BracketPair lastBracketPair = bracketStack.removeLast();
lastBracketPair.end = cursor;
if (!lastBracketPair.isNecessary) {
unneccessaryBrackets.add(lastBracketPair);
}
} else if (input.charAt(cursor) != ' ') {
if (!bracketStack.isEmpty()) {
bracketStack.getLast().isNecessary = true;
}
}
}
return unneccessaryBrackets;
}
class BracketPair {
public int start = -1;
public int end = -1;
public boolean isNecessary = false;
public BracketPair(int startIndex) {
this.start = startIndex;
}
}
}
您可以使用以下
进行测试 public static void main(String... args) {
List<BracketPair> results = new BracketFinder().findUnnecessaryBrackets("(( a + b ) + (( c + d ))) = a + b + c + d");
for (BracketPair result : results) {
System.out.println("Unneccessary brackets at indices " + result.start + "," + result.end);
}
}
答案 2 :(得分:1)
没有编程,但它可能看起来像这样:
给予操作+ / - 值1 给予操作*&amp; /值2 给出操作)(值2(和*一样)
1 go to inner parenthesis and check if the next operation is higher in its value (means the parenthesis is necessary) or equal/lower to the own operation. if equal or lower the parenthesis is not necessary.
2 go to 1
当两步之间没有变化
时,你已经完成了希望这有帮助.. 如果你有解决方案,请告诉我。 如果这没有帮助,请告诉我:))
问候
答案 3 :(得分:1)
一次性可能。我们的想法是在每个()块周围查找上一个/下一个操作并应用关联性规则。当需要()时,这里是带有是/否标记的小表。
// (a + b) + c NO
// (a + b) - c NO
// (a + b) / c YES
// (a + b) * c YES
// (a / b) + c NO
// (a / b) - c NO
// (a / b) / c NO
// (a / b) * c NO
// a + (b + c) NO
// a - (b + c) YES
// a / (b + c) YES
// a * (b + c) YES
// a + (b / c) NO
// a - (b / c) NO
// a / (b / c) YES
// a * (b / c) NO
// (a) ((a)) NO
这是C ++代码(我不确定它是否没有遗漏某些情况 - 它只是一个想法):
string clear(string expression)
{
std::stack<int> openers;
std::stack<int> closers;
std::stack<bool> isJustClosed;
std::stack<char> prevOperations;
std::stack<bool> isComposite;
std::stack<int> toDelete;
prevOperations.push(' ');
isJustClosed.push(false);
isComposite.push(false);
string result = expression + "@";
for (int i = 0; i < result.length(); i++)
{
char ch = result[i];
if ((ch == '*') || (ch == '/') || (ch == '+') || (ch == '-') || (ch == '(') || (ch == ')') || (ch == '@'))
if (isJustClosed.size() > 0)
if (isJustClosed.top() == true) {
// pop all and decide!
int opener = openers.top(); openers.pop();
int closer = closers.top(); closers.pop();
char prev = prevOperations.top(); prevOperations.pop();
char prevOperationBefore = prevOperations.top();
isJustClosed.pop(); //isJustClosed.push(false);
bool isComp = isComposite.top(); isComposite.pop();
bool ok = true;
if (prev == ' ')
ok = false;
else
{
ok = false;
if (((isComp) || (prev == '+') || (prev == '-')) && (ch == '/')) ok = true;
if (((isComp) || (prev == '+') || (prev == '-')) && (ch == '*')) ok = true;
if (((isComp) || (prev == '+') || (prev == '-')) && (prevOperationBefore == '-')) ok = true;
if (prevOperationBefore == '/') ok = true;
if (((isComp) || (prev == '+') || (prev == '-')) && (prevOperationBefore == '*')) ok = true;
}
if (!ok)
{
toDelete.push(opener);
toDelete.push(closer);
}
}
if (ch == '(') {
openers.push(i);
prevOperations.push(' ');
isJustClosed.push(false);
isComposite.push(false);
}
if (ch == ')') {
closers.push(i);
isJustClosed.top() = true;
}
if ((ch == '*') || (ch == '/') || (ch == '+') || (ch == '-')) {
if (!isComposite.top())
{
char prev = prevOperations.top();
if ((ch == '+') || (ch == '-'))
if ((prev == '*') || (prev == '/'))
isComposite.top() = true;
if ((ch == '*') || (ch == '/'))
if ((prev == '+') || (prev == '-'))
isComposite.top() = true;
}
prevOperations.top() = ch;
isJustClosed.top() = false;
}
}
while (toDelete.size() > 0)
{
int pos = toDelete.top();
toDelete.pop();
result[pos] = ' ';
}
result.erase(result.size() - 1, 1);
return result;
}
在每个块中,我们跟踪上一个操作,并跟踪内容是否像(a + b * c)那样复合。
测试:
void test()
{
LOG << clear("((a + (a + b))) - ((c)*(c) + d) * (b + d)") << NL;
LOG << clear("a + (a + b) - ((c) + d) * (b + d)") << NL;
LOG << clear("(a/b)*(c/d)") << NL;
LOG << clear("(a/b)*((((c)/d)))") << NL;
LOG << clear("((a + b) - (c - d))") << NL;
LOG << clear("((a + b)*((c - d)))+c/d*((a*b))") << NL;
LOG << clear("a+a*b*(a/b)") << NL;
LOG << clear("a+a*b*(a+b)") << NL;
}
结果:
a + a + b - ( c * c + d) * b + d
a + a + b - ( c + d) * b + d
a/b * c/d
a/b * c /d
a + b - (c - d)
(a + b)* c - d +c/d* a*b
a+a*b* a/b
a+a*b*(a+b)
答案 4 :(得分:0)
我个人认为至少有两种方式:
<强>树强>
可以从输入表达式创建树。树创建后,它可以展平,没有无用的括号
波兰表示法
(( a + b ) + (( c + d )))
将成为(+ (+ a b) (+ c d))
(( a + b ) * (( c + d )))
将成为(* (+ a b) (+ c d))
从这里你可以比较每个操作数和因子,看它们在求解算术方程时是否具有相同的优先级
我会选择这棵树。