我希望为三个主要效果构建一个列联表。这些是犯罪,性别和事先定罪。响应变量是是否批准了轻判。
这是我迄今为止最好的。
Crime Gender Priorconv Yes No
1 Shoplifting Men N 24 1
2 Other Theft Acts Men N 52 9
3 Shoplifting Women N 48 3
4 Other Theft Acts Women N 22 2
5 Shoplifting Men P 17 6
6 Other Theft Acts Men P 60 34
7 Shoplifting Women P 15 6
8 Other Theft Acts Women P 4 3
由以下代码
创建table1<-expand.grid(Crime=factor(c("Shoplifting","Other Theft Acts")),Gender=factor(c("Men","Women")),
Priorconv=factor(c("N","P")))
table1<-data.frame(table1,Yes=c(24,52,48,22,17,60,15,4),No=c(1,9,3,2,6,34,6,3))
不幸的是,这不是很优雅,所以我想知道是否有其他方法可以更清楚地呈现数据。
谢谢。
答案 0 :(得分:4)
对于意外事故,您可以使用示例运算符并将其置于函数内以更改字符串数量,如
factory <- function(i) {
crime <- sample(c("Shoplifting","Other Theft Acts"),i, replace = TRUE)
gender <- sample(c("Men","Women"),i,replace = TRUE)
priorconv <- sample(c("P","N"),i, replace = TRUE)
table <- data.frame(crime,gender,priorconv)
return(table)
}
table1 <- factory(20)
结果:
crime gender priorconv
1 Shoplifting Men N
2 Shoplifting Women P
3 Other Theft Acts Men P
4 Shoplifting Men P
5 Other Theft Acts Women N
6 Shoplifting Women N
7 Shoplifting Women P
8 Shoplifting Men P
9 Other Theft Acts Women P
10 Shoplifting Men P
11 Other Theft Acts Men N
12 Other Theft Acts Men P
13 Shoplifting Men P
14 Shoplifting Women N
15 Other Theft Acts Men N
16 Other Theft Acts Men P
17 Other Theft Acts Women P
18 Shoplifting Women P
19 Other Theft Acts Men N
20 Shoplifting Women N