我一直在努力制作一个计算scale-max流算法的程序:
到目前为止,我已经编写了一个函数来获得最大权重和缩放maxflow,我知道这几乎与Ford Fulkerson算法相同,只是用delta更新值;我的代码是:
import math
class Edge(object):
def __init__(self, u, v, w):
self.source = u
self.target = v
self.capacity = w
def __repr__(self):
return "%s->%s:%s" % (self.source, self.target, self.capacity)
class FlowNetwork(object):
def __init__(self):
self.adj = {}
self.flow = {}
def AddVertex(self, vertex):
self.adj[vertex] = []
def GetEdges(self, v):
return self.adj[v]
def AddEdge(self, u, v, w = 0):
if u == v:
raise ValueError("u == v")
edge = Edge(u, v, w)
redge = Edge(v, u, 0)
edge.redge = redge
redge.redge = edge
self.adj[u].append(edge)
self.adj[v].append(redge)
# Intialize all flows to zero
self.flow[edge] = 0
self.flow[redge] = 0
def FindPath(self, source, target, path):
if source == target:
return path
for edge in self.GetEdges(source):
residual = edge.capacity - self.flow[edge]
if residual > 0 and not (edge, residual) in path:
result = self.FindPath(edge.target, target, path + [(edge, residual)])
if result != None:
return result
def MaxFlow(self, source, target):
path = self.FindPath(source, target, [])
print 'path after enter MaxFlow: %s' % path
for key in self.flow:
print '%s:%s' % (key,self.flow[key])
print '-' * 20
while path != None:
flow = min(res for edge, res in path)
for edge, res in path:
self.flow[edge] += flow
self.flow[edge.redge] -= flow
for key in self.flow:
print '%s:%s' % (key,self.flow[key])
path = self.FindPath(source, target, [])
print 'path inside of while loop: %s' % path
for key in self.flow:
print '%s:%s' % (key,self.flow[key])
return sum(self.flow[edge] for edge in self.GetEdges(source))
def maxWeight(self):
wmax=0
for i in self.adj:
for j in self.GetEdges(i):
#print j.capacity
if j.capacity>wmax:
wmax=j.capacity
return wmax
def __iter__(self):
return iter(self.adj.values())
def scalingMaxFlow(self,source,target):
delta=2**int(math.log(self.maxWeight(),2))
path = self.FindPath(source, target, [])
while delta>=1:
while path!=None:
for edge, res in path:
self.flow[edge] += delta
self.flow[edge.redge] -= delta
path = self.FindPath(source, target, [])
delta//=2
#print delta
return sum(self.flow[edge] for edge in self.GetEdges(source))
if __name__ == "__main__":
g = FlowNetwork()
map(g.AddVertex, ['s', 'o', 'p', 'q', 'r', 't'])
g.AddEdge('s', 'o', 16)
g.AddEdge('s', 'q', 13)
g.AddEdge('o', 'q', 10)
g.AddEdge('q', 'o', 4)
g.AddEdge('o', 'p', 12)
g.AddEdge('q', 'r', 14)
g.AddEdge('p','q',9)
g.AddEdge('p', 't', 20)
g.AddEdge('r', 'p', 7)
g.AddEdge('r', 't', 4)
我看到它为MaxFlow打印23,为scalingMaxFlow打印32,我做错了什么?
由于
答案 0 :(得分:1)
scalingMaxFlow
返回None时, FindPath(source, target, [])
不会终止,因为delta永远不会更新。在您的示例中似乎就是这种情况。