我对R很陌生,并且正在与看起来非常简单的查询进行斗争。
我使用read.csv将一个csv文件导入到R中,并且在整理数据和进一步分析之前尝试删除美元符号($)(美元符号正在对图表造成严重破坏)。
我一直在努力尝试从数据框中删除使用dplyr和gsub的$,我真的很感激有关如何去做的一些建议。
我的数据框如下所示:
> str(data)
'data.frame': 50 obs. of 17 variables:
$ Year : int 1 2 3 4 5 6 7 8 9 10 ...
$ Prog.Cost : Factor w/ 2 levels "-$3,333","$0": 1 2 2 2 2 2 2 2 2 2 ...
$ Total.Benefits : Factor w/ 44 levels "$2,155","$2,418",..: 25 5 7 11 12 10 9 14 13 8 ...
$ Net.Cash.Flow : Factor w/ 45 levels "-$2,825","$2,155",..: 1 6 8 12 13 11 10 15 14 9 ...
$ Participant : Factor w/ 46 levels "$0","$109","$123",..: 1 1 1 45 46 2 3 4 5 6 ...
$ Taxpayer : Factor w/ 48 levels "$113","$114",..: 19 32 35 37 38 40 41 45 48 47 ...
$ Others : Factor w/ 47 levels "-$9","$1,026",..: 12 25 26 24 23 11 9 10 8 7 ...
$ Indirect : Factor w/ 42 levels "-$1,626","-$2",..: 1 6 10 18 22 24 28 33 36 35 ...
$ Crime : Factor w/ 35 levels "$0","$1","$10",..: 6 11 13 19 21 23 28 31 33 32 ...
$ Child.Welfare : Factor w/ 1 level "$0": 1 1 1 1 1 1 1 1 1 1 ...
$ Education : Factor w/ 1 level "$0": 1 1 1 1 1 1 1 1 1 1 ...
$ Health.Care : Factor w/ 38 levels "-$10","-$11",..: 7 7 7 7 2 8 12 36 30 9 ...
$ Welfare : Factor w/ 1 level "$0": 1 1 1 1 1 1 1 1 1 1 ...
$ Earnings : Factor w/ 41 levels "$0","$101","$104",..: 1 1 1 22 23 24 25 26 27 28 ...
$ State.Benefits : Factor w/ 37 levels "$102","$117",..: 37 1 3 4 6 10 12 18 24 27 ...
$ Local.Benefits : Factor w/ 24 levels "$115","$136",..: 24 1 2 12 14 16 19 22 23 21 ...
$ Federal.Benefits: Factor w/ 39 levels "$0","$100","$102",..: 1 1 1 12 12 17 20 19 19 21 ...
答案 0 :(得分:5)
如果您只需删除$
而不想更改列的class
。
indx <- sapply(data, is.factor)
data[indx] <- lapply(data[indx], function(x)
as.factor(gsub("\\$", "", x)))
如果您需要numeric
列,则可以删除,
(由@David提供)
Arenburg)并按numeric
as.numeric
data[indx] <- lapply(data[indx], function(x) as.numeric(gsub("[,$]", "", x)))
您可以将其包装在函数
中f1 <- function(dat, pat="[$]", Class="factor"){
indx <- sapply(dat, is.factor)
if(Class=="factor"){
dat[indx] <- lapply(dat[indx], function(x) as.factor(gsub(pat, "", x)))
}
else {
dat[indx] <- lapply(dat[indx], function(x) as.numeric(gsub(pat, "", x)))
}
dat
}
f1(data)
f1(data, pat="[,$]", "numeric")
set.seed(24)
data <- data.frame(Year=1:6, Prog.Cost= sample(c("-$3,3333", "$0"),
6, replace=TRUE), Total.Benefits= sample(c("$2,155","$2,418",
"$2,312"), 6, replace=TRUE))
答案 1 :(得分:3)
如果你必须用这样的数据阅读很多csv文件,也许你应该考虑创建自己的as
方法来与colClasses
参数一起使用,如下所示:
setClass("dollar")
setAs("character", "dollar",
function(from)
as.numeric(gsub("[,$]", "", from, fixed = FALSE)))
在演示如何使用它之前,让我们将@ akrun的样本数据写入名为&#34; A&#34;的csv文件中。在您直接阅读文件的实际用例中,这不是必需的......
## write @akrun's sample data to a csv file named "A"
set.seed(24)
data <- data.frame(
Year=1:6,
Prog.Cost= sample(c("-$3,3333", "$0"), 6, replace = TRUE),
Total.Benefits = sample(c("$2,155","$2,418","$2,312"), 6, replace=TRUE))
A <- tempfile()
write.csv(data, A, row.names = FALSE)
现在,您有colClasses
的新选项,可以与read.csv
一起使用: - )
read.csv(A, colClasses = c("numeric", "dollar", "dollar"))
# Year Prog.Cost Total.Benefits
# 1 1 -33333 2155
# 2 2 -33333 2312
# 3 3 0 2312
# 4 4 0 2155
# 5 5 0 2418
# 6 6 0 2418
答案 2 :(得分:2)
再次阅读它可能会更有益,这次是readLines
。我将akrun的数据写入文件&#34; data.text&#34;并在读取表格之前修复了字符串。不确定逗号是小数点还是令人讨厌的逗号,所以我选择了小数点。
r <- gsub("[$]", "", readLines("data.txt"))
read.table(text = r, dec = ",")
# Year Prog.Cost Total.Benefits
# 1 1 -3.3333 2.155
# 2 2 -3.3333 2.312
# 3 3 0.0000 2.312
# 4 4 0.0000 2.155
# 5 5 0.0000 2.418
# 6 6 0.0000 2.418