假设我们有以下数据
set.seed(123)
dat <- data.frame(var1=c(10,35,13,19,15,20,19), id=c(1,1,2,2,2,3,4))
(sampledIDs <- sample(min(dat$id):max(dat$id), size=3, replace=TRUE))
> [1] 2 4 2
samplesID是从dat$id
采样(替换)的id的向量。
我需要导致的代码(并且也适用于包含更多变量的大型数据集):
var1 id
13 2
19 2
15 2
19 4
13 2
19 2
15 2
代码dat[which(dat$id%in%sampledIDs),]
没有给我我想要的东西,因为这段代码的结果是
var1 id
13 2
19 2
15 2
19 4
dat$id==2
的主题在此数据中只出现一次(我理解为什么这是结果,但不知道如何得到我想要的东西)。有人可以帮忙吗?
编辑:感谢您的答案,这里是所有答案的运行时间(对于那些感兴趣的人):
test replications elapsed relative user.self
3 dat[unlist(lapply(sampledIDs, function(x) which(x == dat$id))), ] 1000 0.67 1.000 0.64
1 dat[which(sapply(sampledIDs, "==", dat$id), arr.ind = TRUE)[, 1], ] 1000 0.67 1.000 0.67
2 do.call(rbind, split(dat, dat$id)[as.character(sampledIDs)]) 1000 1.83 2.731 1.83
4 setkey(setDT(dat), id)[J(sampledIDs)] 1000 1.33 1.985 1.33
答案 0 :(得分:5)
对于使用data.table
binary search
library(data.table)
setkey(setDT(dat), id)[J(sampledIDs)]
# var1 id
# 1: 13 2
# 2: 19 2
# 3: 15 2
# 4: 19 4
# 5: 13 2
# 6: 19 2
# 7: 15 2
编辑: 这是一个不太大的数据集(1e + 05行)的基准,它说明哪个是明显的赢家
library(data.table)
library(microbenchmark)
set.seed(123)
n <- 1e5
dat <- data.frame(var1 = sample(seq_len(100), n, replace = TRUE), id = sample(seq_len(10), n, replace = TRUE))
(sampledIDs <- sample(min(dat$id) : max(dat$id), size = 3, replace = TRUE))
dat2 <- copy(dat)
Sven1 <- function(dat) dat[unlist(lapply(sampledIDs, function(x) which(x == dat$id))), ]
Sven2 <- function(dat) dat[which(sapply(sampledIDs, "==", dat$id), arr.ind = TRUE)[ , 1], ]
flodel <- function(dat) do.call(rbind, split(dat, dat$id)[as.character(sampledIDs)])
David <- function(dat2) setkey(setDT(dat2), id)[J(sampledIDs)]
Res <- microbenchmark(Sven1(dat),
Sven2(dat),
flodel(dat),
David(dat2))
Res
# Unit: milliseconds
# expr min lq median uq max neval
# Sven1(dat) 4.356151 4.817557 6.715533 7.313877 45.407768 100
# Sven2(dat) 9.750984 12.385677 14.324671 16.655005 54.797096 100
# flodel(dat) 36.097602 39.680006 42.236017 44.314981 82.261879 100
# David(dat2) 1.813387 2.068749 2.154774 2.335442 8.665379 100
boxplot(Res)
例如,如果我们想要更多的样本,那么只有3个Ids,但是可以说,10,基准变得荒谬
(sampledIDs <- sample(min(dat$id) : max(dat$id), size = 10, replace = TRUE))
[1] 7 6 10 9 5 9 5 3 7 3
# Unit: milliseconds
# expr min lq median uq max neval
# Sven1(dat) 80.124502 89.141162 97.908365 104.111738 175.40919 100
# Sven2(dat) 99.010410 127.797966 159.404395 170.751069 209.96887 100
# flodel(dat) 129.722435 144.847505 157.737362 178.242103 232.41293 100
# David(dat2) 2.431682 2.721038 2.855103 3.057796 19.60826 100
答案 1 :(得分:3)
你可以这样做:
do.call(rbind, split(dat, dat$id)[as.character(sampledIDs)])
答案 2 :(得分:3)
一种方法:
dat[unlist(lapply(sampledIDs, function(x) which(x == dat$id))), ]
# var1 id
# 3 13 2
# 4 19 2
# 5 15 2
# 7 19 4
# 3.1 13 2
# 4.1 19 2
# 5.1 15 2
另一种方法:
dat[which(sapply(sampledIDs, "==", dat$id), arr.ind = TRUE)[ , 1], ]