我期望的输出是输入文件中每个单词的计数。但我的输出是整个输入文件,因为它是。
我使用extends Mapper<LongWritable, Text, Text, IntWritable>
用于mapper类,Reducer<Text, IntWritable, Text, IntWritable>
用于reducer类。
这是我的代码
driver.java
public class driver extends Configured implements Tool{
public int run(String[] args) throws Exception
{
Configuration conf = new Configuration();
Job job = new Job(conf, "wordcount");
job.setMapperClass(mapper.class);
job.setReducerClass(reducer.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(Text.class);
job.setInputFormatClass(KeyValueTextInputFormat.class);
FileInputFormat.addInputPath(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));
job.waitForCompletion(true);
//JobClient.runJob((JobConf) conf);
//System.exit(job.waitForCompletion(true) ? 0 : 1);
return 0;
}
public static void main(String[] args) throws Exception
{
long start = System.currentTimeMillis();
//int res = ToolRunner.run(new Configuration(), new driver(),args);
int res = ToolRunner.run(new Configuration(), new driver(),args);
long stop = System.currentTimeMillis();
System.out.println ("Time: " + (stop-start));
System.exit(res);
}
}
&#13;
mapper.java
public class mapper extends Mapper<LongWritable, Text, Text, IntWritable>
{
//hadoop supported data types
private final static IntWritable one = new IntWritable(1);
private Text word = new Text();
//map method that performs the tokenizer job and framing the initial key value pairs
public void map(LongWritable key, Text value, OutputCollector<Text, IntWritable> output, Reporter reporter) throws IOException
{
String line = value.toString();
StringTokenizer tokenizer = new StringTokenizer(line);
while (tokenizer.hasMoreTokens())
{
word.set(tokenizer.nextToken());
output.collect(word, one);
}
}
}
&#13;
public class reducer extends Reducer<Text, IntWritable, Text, IntWritable>
{
//reduce method accepts the Key Value pairs from mappers, do the aggregation based on keys and produce the final out put
public void reduce(Text key, Iterator<IntWritable> values, OutputCollector<Text, IntWritable> output, Reporter reporter) throws IOException
{
int sum = 0;
while (values.hasNext())
{
sum += values.next().get();
}
output.collect(key, new IntWritable(sum));
}
}
&#13;
答案 0 :(得分:1)
你被新的&amp; MapReduce的旧API。我认为你试图在新的API中编写WordCount程序,但是从旧的API(也许是旧的博客文章)中获取了片段。如果您只是在地图和地图上添加@override
注释,您就可以自己找到问题。减少方法。
看看他们在进化后会发生什么:
您刚刚编写了两个指定较旧签名的新方法,因此它们不会覆盖任何内容,无处调用。代码没有做任何事情,因为被调用的实际方法有空体(我不认为有一个默认实现,如果只有身份操作)。
无论如何,您应该遵循编码的基本约定。
答案 1 :(得分:0)
如果您的代码遇到问题,请运行此代码。此代码包含mapper,reducer和main函数。
import java.io.IOException;
import java.util.*;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.conf.*;
import org.apache.hadoop.io.*;
import org.apache.hadoop.mapred.*;
import org.apache.hadoop.util.*;
public class WordCount {
public static class Map extends MapReduceBase implements Mapper<LongWritable, Text, Text, IntWritable> {
private final static IntWritable one = new IntWritable(1);
private Text word = new Text();
public void map(LongWritable key, Text value, OutputCollector<Text, IntWritable> output, Reporter reporter) throws IOException {
String line = value.toString();
StringTokenizer tokenizer = new StringTokenizer(line);
while (tokenizer.hasMoreTokens()) {
word.set(tokenizer.nextToken());
output.collect(word, one);
}
}
}
public static class Reduce extends MapReduceBase implements Reducer<Text, IntWritable, Text, IntWritable> {
public void reduce(Text key, Iterator<IntWritable> values, OutputCollector<Text, IntWritable> output, Reporter reporter) throws IOException {
int sum = 0;
while (values.hasNext()){
sum += values.next().get();
}
output.collect(key, new IntWritable(sum));
}
}
public static void main(String[] args) throws Exception {
JobConf conf = new JobConf(WordCount.class);
conf.setJobName("wordcount");
conf.setOutputKeyClass(Text.class);
conf.setOutputValueClass(IntWritable.class);
conf.setMapperClass(Map.class);
conf.setCombinerClass(Reduce.class);
conf.setReducerClass(Reduce.class);
conf.setInputFormat(TextInputFormat.class);
conf.setOutputFormat(TextOutputFormat.class);
FileInputFormat.setInputPaths(conf, new Path(args[0]));
FileOutputFormat.setOutputPath(conf, new Path(args[1]));
JobClient.runJob(conf);
}
}
2)之后创建一个这段代码的jar,说wordcount.jar保存在你的主目录(/home/user/wordcount.jar)中并运行以下命令:
hadoop jar wordcount.jar classname /inputfile /outputfile /
这将在hadoop的/(root)目录下创建一个文件输出文件。通过
查看结果hadoop dfs -cat /outputfile/part-m-00000
这将成功运行您的wordcount程序。
答案 2 :(得分:0)
试试这个,
import java.io.IOException;
import java.util.Iterator;
import java.util.StringTokenizer;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapred.FileInputFormat;
import org.apache.hadoop.mapred.FileOutputFormat;
import org.apache.hadoop.mapred.JobClient;
import org.apache.hadoop.mapred.JobConf;
import org.apache.hadoop.mapred.MapReduceBase;
import org.apache.hadoop.mapred.Mapper;
import org.apache.hadoop.mapred.OutputCollector;
import org.apache.hadoop.mapred.Reducer;
import org.apache.hadoop.mapred.Reporter;
import org.apache.hadoop.mapred.TextInputFormat;
import org.apache.hadoop.mapred.TextOutputFormat;
public class WordCount {
public static class Map extends MapReduceBase implements
Mapper<LongWritable, Text, Text, IntWritable> {
@Override
public void map(LongWritable key, Text value, OutputCollector<Text, IntWritable> output, Reporter reporter)
throws IOException {
String line = value.toString();
StringTokenizer tokenizer = new StringTokenizer(line);
System.out.println(line);
while (tokenizer.hasMoreTokens()) {
value.set(tokenizer.nextToken());
output.collect(value, new IntWritable(1));
}
}
}
public static class Reduce extends MapReduceBase implements
Reducer<Text, IntWritable, Text, IntWritable> {
@Override
public void reduce(Text key, Iterator<IntWritable> values,
OutputCollector<Text, IntWritable> output, Reporter reporter)
throws IOException {
int sum = 0;
while (values.hasNext()) {
sum += values.next().get();
}
output.collect(key, new IntWritable(sum));
}
}
public static void main(String[] args) throws Exception,IOException {
JobConf conf = new JobConf(WordCount.class);
conf.setJobName("WordCount");
conf.setOutputKeyClass(Text.class);
conf.setOutputValueClass(IntWritable.class);
conf.setMapperClass(Map.class);
conf.setReducerClass(Reduce.class);
conf.setInputFormat(TextInputFormat.class);
conf.setOutputFormat(TextOutputFormat.class);
FileInputFormat.setInputPaths(conf, new Path("/home/user17/test.txt"));
FileOutputFormat.setOutputPath(conf, new Path("hdfs://localhost:9000/out2"));
JobClient.runJob(conf);
}
}
制作jar并在commandLine上执行给定的命令
hadoop jar WordCount.jar WordCount /inputfile /outputfile