我正在使用以下程序计算给定范围的正方形网格(左下角 - >右上角)的给定半径的六边形多边形坐标:
def calc_polygons(startx, starty, endx, endy, radius):
sl = (2 * radius) * math.tan(math.pi / 6)
# calculate coordinates of the hexagon points
p = sl * 0.5
b = sl * math.cos(math.radians(30))
w = b * 2
h = 2 * sl
origx = startx
origy = starty
# offsets for moving along and up rows
xoffset = b
yoffset = 3 * p
polygons = []
row = 1
counter = 0
while starty < endy:
if row % 2 == 0:
startx = origx + xoffset
else:
startx = origx
while startx < endx:
p1x = startx
p1y = starty + p
p2x = startx
p2y = starty + (3 * p)
p3x = startx + b
p3y = starty + h
p4x = startx + w
p4y = starty + (3 * p)
p5x = startx + w
p5y = starty + p
p6x = startx + b
p6y = starty
poly = [
(p1x, p1y),
(p2x, p2y),
(p3x, p3y),
(p4x, p4y),
(p5x, p5y),
(p6x, p6y),
(p1x, p1y)]
polygons.append(poly)
counter += 1
startx += w
starty += yoffset
row += 1
return polygons
这适用于数百万的多边形,但很快就会减慢(并占用大量内存)大网格。我想知道是否有一种方法可以优化这一点,可能是通过将基于范围计算的numpy顶点数组压缩在一起,并完全删除循环 - 但是,我的几何结构不够好,所以任何建议欢迎改进。
答案 0 :(得分:3)
将问题分解为常规方格网格(不连续)。一个列表将包含所有移位的十六进制(即偶数行),另一个列表将包含未移位的(直线)行。
def calc_polygons_new(startx, starty, endx, endy, radius):
sl = (2 * radius) * math.tan(math.pi / 6)
# calculate coordinates of the hexagon points
p = sl * 0.5
b = sl * math.cos(math.radians(30))
w = b * 2
h = 2 * sl
# offsets for moving along and up rows
xoffset = b
yoffset = 3 * p
row = 1
shifted_xs = []
straight_xs = []
shifted_ys = []
straight_ys = []
while startx < endx:
xs = [startx, startx, startx + b, startx + w, startx + w, startx + b, startx]
straight_xs.append(xs)
shifted_xs.append([xoffset + x for x in xs])
startx += w
while starty < endy:
ys = [starty + p, starty + (3 * p), starty + h, starty + (3 * p), starty + p, starty, starty + p]
(straight_ys if row % 2 else shifted_ys).append(ys)
starty += yoffset
row += 1
polygons = [zip(xs, ys) for xs in shifted_xs for ys in shifted_ys] + [zip(xs, ys) for xs in straight_xs for ys in straight_ys]
return polygons
正如您所预测的那样,压缩会带来更快的性能,尤其是对于较大的网格。在我的笔记本电脑上,我在计算30个六边形网格时看到了3倍的加速 - 对于2900六边形网格,速度为10倍。
>>> from timeit import Timer
>>> t_old = Timer('calc_polygons_orig(1, 1, 100, 100, 10)', 'from hexagons import calc_polygons_orig')
>>> t_new = Timer('calc_polygons_new(1, 1, 100, 100, 10)', 'from hexagons import calc_polygons_new')
>>> t_old.timeit(20000)
9.23395299911499
>>> t_new.timeit(20000)
3.12791109085083
>>> t_old_large = Timer('calc_polygons_orig(1, 1, 1000, 1000, 10)', 'from hexagons import calc_polygons_orig')
>>> t_new_large = Timer('calc_polygons_new(1, 1, 1000, 1000, 10)', 'from hexagons import calc_polygons_new')
>>> t_old_large.timeit(200)
9.09613299369812
>>> t_new_large.timeit(200)
0.7804560661315918
可能有机会创建迭代器而不是列表以节省内存。取决于您的代码如何使用多边形列表。
答案 1 :(得分:1)
这是不需要任何循环的解决方案。它将创建50x50六边形的网格:
coord_x, coord_y = np.meshgrid(50, 50, sparse=False, indexing='xy')
ratio = np.sqrt(3) / 2
coord_y = coord_y * ratio # Condense the coordinates along Y-axes
coord_x = coord_x.astype(np.float)
coord_x[1::2, :] += 0.5 # Shift every other row of the grid
coord_x = coord_x.reshape(-1, 1) # Flatten the grid matrices into [2500, 1] arrays
coord_y = coord_y.reshape(-1, 1)
radius = 5 # Inflate each hexagon to the required radius
coord_x *= radius
coord_y *= radius
这是我在python中使用hexalattice软件包的代码段,为您做到了(+网格旋转,大小和绘图的高级选项)
在这里您可以找到其他示例并链接到该存储库:LINK