在python中将Pandas数据帧转换为json的最佳方法

时间:2014-10-30 23:13:57

标签: python json pandas dataframe

我试图在python中将pandas数据帧转换为json。但我无法获得想要在json中使用的结果格式我对熊猫的新手是否有一种方法可以转动并简单地使用所有我能想到的是创建循环来反复获取密钥"频率"和州。但我觉得必须有更好的方法。任何建议都将不胜感激。

杰森:我想:

 [
    {State:'AL',freq:{low:4786, mid:1319, high:249}}
    ,{State:'AZ',freq:{low:1101, mid:412, high:674}}
    ,{State:'CT',freq:{low:932, mid:2149, high:418}}
    ,{State:'DE',freq:{low:832, mid:1152, high:1862}}
    ,{State:'FL',freq:{low:4481, mid:3304, high:948}}
    ,{State:'GA',freq:{low:1619, mid:167, high:1063}}
    ,{State:'IA',freq:{low:1819, mid:247, high:1203}}
    ,{State:'IL',freq:{low:4498, mid:3852, high:942}}
    ,{State:'IN',freq:{low:797, mid:1849, high:1534}}
    ,{State:'KS',freq:{low:162, mid:379, high:471}}
    ];

但我的数据框有3列,如下所示:

Dataframe:我得到了

State   type    freq
AZ  low 1101
CT  low 932
DE  low 832
FL  low 4481
GA  low 1619
IA  low 1819
IL  low 4498
IN  low 797
KS  low 162
AZ  mid 412
CT  mid 2149
DE  mid 1152
FL  mid 3304
GA  mid 167
IA  mid 247
IL  mid 3852
IN  mid 1849
KS  mid 379
AZ  high    674
CT  high    418
DE  high    1862
FL  high    948
GA  high    1063
IA  high    1203
IL  high    942
IN  high    1534
KS  high    471

1 个答案:

答案 0 :(得分:2)

import pandas as pd

data = """\
State   type    freq
AZ  low 1101
CT  low 932
DE  low 832
FL  low 4481
GA  low 1619
IA  low 1819
IL  low 4498
IN  low 797
KS  low 162
AZ  mid 412
CT  mid 2149
DE  mid 1152
FL  mid 3304
GA  mid 167
IA  mid 247
IL  mid 3852
IN  mid 1849
KS  mid 379
AZ  high    674
CT  high    418
DE  high    1862
FL  high    948
GA  high    1063
IA  high    1203
IL  high    942
IN  high    1534
KS  high    471"""

data = pd.DataFrame([line.split() for line in data.splitlines()[1:]],
                    columns=data.splitlines()[0].split())

bystate = data.pivot('State', 'type')

打印

          freq            
   type   high   low   mid
   State                  
   AZ      674  1101   412
   CT      418   932  2149
   DE     1862   832  1152
   FL      948  4481  3304
   GA     1063  1619   167
   IA     1203  1819   247
   IL      942  4498  3852
   IN     1534   797  1849
   KS      471   162   379

获得最终数据帧后,可以使用bystate.to_json()获取JSON格式的字符串。