我创建了一个CherryPy Web服务,它将数据存储在地图中,从客户端接收密钥并返回相应的数据:
import sys
import imp
import cherrypy
data_source = get_data() # get data from the database and store it in the map
class Provider:
exposed = True
def POST(self, key):
global data_source
data = data_source[key] # get stored data based on given key
return data
if __name__ == '__main__':
cherrypy.tree.mount(Provider(), '/Provider',{'/':
{'request.dispatch': cherrypy.dispatch.MethodDispatcher()}
})
cherrypy.config.update({'server.socket_host': '0.0.0.0',
'server.socket_port': 8080,
})
cherrypy.server.max_request_body_size = 1048576000
cherrypy.engine.start()
cherrypy.engine.block()
然后,在另一台机器上,我创建了一个脚本来向提供者请求数据。使用该脚本,可以指定我想要生成的并发请求数:
import requests
import time
from threading import Thread
def make_request(id, key):
start = time.time()
r = requests.post("http://provider-host/Provider", {'key':key})
end = time.time()
print 'Thread {0} takes {1} seconds to finish with status code {2}'.format(id, end - start, r.status_code)
def start(num, key):
ts = []
for i in range(num):
t = Thread(target=make_request, args=(i, key))
ts.append(t)
for t in ts: t.start()
for t in ts: t.join()
最后,我做了一个测试,用两种不同的方法请求相同的密钥10次:顺序和并发。
顺序方法:
time for i in range(10): start(1, 'big_data_key')
结果是:
Thread 0 takes 2.51558494568 seconds to finish with status code 200
Thread 0 takes 2.47761011124 seconds to finish with status code 200
Thread 0 takes 2.66229009628 seconds to finish with status code 200
Thread 0 takes 2.47381901741 seconds to finish with status code 200
Thread 0 takes 2.4907720089 seconds to finish with status code 200
Thread 0 takes 2.93357181549 seconds to finish with status code 200
Thread 0 takes 2.47671484947 seconds to finish with status code 200
Thread 0 takes 2.40888786316 seconds to finish with status code 200
Thread 0 takes 2.6319899559 seconds to finish with status code 200
Thread 0 takes 2.77075099945 seconds to finish with status code 200
CPU times: user 1.79 s, sys: 1.06 s, total: 2.85 s
Wall time: 25.9 s
并发方法:
time start('138.251.195.251', 10, 'big_data_key')
结果是:
Thread 5 takes 15.5736939907 seconds to finish with status code 200
Thread 1 takes 19.4057281017 seconds to finish with status code 200
Thread 7 takes 21.4743158817 seconds to finish with status code 200
Thread 8 takes 22.4408829212 seconds to finish with status code 200
Thread 0 takes 24.1915988922 seconds to finish with status code 200
Thread 2 takes 24.3175201416 seconds to finish with status code 200
Thread 6 takes 24.3368370533 seconds to finish with status code 200
Thread 4 takes 24.3618791103 seconds to finish with status code 200
Thread 9 takes 24.3891952038 seconds to finish with status code 200
Thread 3 takes 24.5536601543 seconds to finish with status code 200
CPU times: user 2.34 s, sys: 1.67 s, total: 4.01 s
Wall time: 24.6 s
很明显,使用并发方法,完成一个请求所需的时间高于顺序方法。
所以,我的问题是:下载时间的差异是由两台机器之间的带宽或其他因素造成的,例如:樱桃相关?如果它是由其他东西引起的,我将不胜感激任何建议来处理它。
答案 0 :(得分:1)
然后很明显,你的瓶颈就是网络。 220MiB以10.8MiB / s的速度传输至少需要20秒。您的实验需要约25秒,即8.8MiB / s,即在100MBit / s的最大理论容量中有效~74Mbit / s。考虑到所有可能的测量误差,这是一个很好的结果。
串行和并行情况(~5%)之间的区别表明多路复用没有帮助,因为瓶颈是网络带宽,而不是单独的连接限制。
要测量CherryPy影响,您可以设置用本机代码编写的Web服务器,我建议 nginx ,将文件放在那里,并尝试下载10次。对于并行测试,您可以尝试Apache ab,例如ab -n 10 -c 10 http://provider-host/some-big-file
。
还有关于CherryPy的几点说明:
server.thread_pool
,有10个工作者,'/' : {'tools.gzip.on': True}
,这将显着增强纯文本数据。您还可以查看this question,了解如何使用CherryPy处理大文件下载。