我一直在搜索并且没有找到解决方案,如何使用Spark SQL查询从纪元保存为UTC毫秒的日期。我从NoSQL数据源(MongoDB的JSON)中提取的模式的目标日期为:
|-- dateCreated: struct (nullable = true)
||-- $date: long (nullable = true)
完整的架构如下:
scala> accEvt.printSchema
root
|-- _id: struct (nullable = true)
| |-- $oid: string (nullable = true)
|-- appId: integer (nullable = true)
|-- cId: long (nullable = true)
|-- data: struct (nullable = true)
| |-- expires: struct (nullable = true)
| | |-- $date: long (nullable = true)
| |-- metadata: struct (nullable = true)
| | |-- another key: string (nullable = true)
| | |-- class: string (nullable = true)
| | |-- field: string (nullable = true)
| | |-- flavors: string (nullable = true)
| | |-- foo: string (nullable = true)
| | |-- location1: string (nullable = true)
| | |-- location2: string (nullable = true)
| | |-- test: string (nullable = true)
| | |-- testKey: string (nullable = true)
| | |-- testKey2: string (nullable = true)
|-- dateCreated: struct (nullable = true)
| |-- $date: long (nullable = true)
|-- id: integer (nullable = true)
|-- originationDate: struct (nullable = true)
| |-- $date: long (nullable = true)
|-- processedDate: struct (nullable = true)
| |-- $date: long (nullable = true)
|-- receivedDate: struct (nullable = true)
| |-- $date: long (nullable = true)
我的目标是按照以下方式编写查询:
SELECT COUNT(*) FROM myTable WHERE dateCreated BETWEEN [dateStoredAsLong0] AND [dateStoredAsLong1]
到目前为止,我的过程一直是:
scala> val sqlContext = new org.apache.spark.sql.SQLContext(sc)
sqlContext: org.apache.spark.sql.SQLContext = org.apache.spark.sql.SQLContext@29200d25
scala> val accEvt = sqlContext.jsonFile("/home/bkarels/mongoexport/accomplishment_event.json")
...
14/10/29 15:03:38 INFO SparkContext: Job finished: reduce at JsonRDD.scala:46, took 4.668981083 s
accEvt: org.apache.spark.sql.SchemaRDD =
SchemaRDD[6] at RDD at SchemaRDD.scala:103
scala> accEvt.registerAsTable("accomplishmentEvent")
(此时以下基线查询成功执行)
scala> sqlContext.sql("select count(*) from accomplishmentEvent").collect.foreach(println)
...
[74475]
现在,我无法纠正的巫术是如何形成我的选择陈述以推断日期。例如,以下执行w / o错误,但返回零而不是所有记录的计数(74475)。
scala> sqlContext.sql("select count(*) from accomplishmentEvent where processedDate >= '1970-01-01'").collect.foreach(println)
...
[0]
我也尝试过一些丑陋的事情:
scala> val now = new java.util.Date()
now: java.util.Date = Wed Oct 29 15:05:15 CDT 2014
scala> val today = now.getTime
today: Long = 1414613115743
scala> val thirtydaysago = today - (30 * 24 * 60 * 60 * 1000)
thirtydaysago: Long = 1416316083039
scala> sqlContext.sql("select count(*) from accomplishmentEvent where processedDate <= %s and processedDate >= %s".format(today,thirtydaysago)).collect.foreach(println)
根据建议,我已在指定字段中选择以确保其有效。所以:
scala> sqlContext.sql("select receivedDate from accomplishmentEvent limit 10").collect.foreach(println)
返回:
[[1376318850033]]
[[1376319429590]]
[[1376320804289]]
[[1376320832835]]
[[1376320832960]]
[[1376320835554]]
[[1376320914480]]
[[1376321041899]]
[[1376321109341]]
[[1376321121469]]
然后延伸试图获得某种日期,我尝试过:
scala> sqlContext.sql("select cId from accomplishmentEvent where receivedDate.date > '1970-01-01' limit 5").collect.foreach(println)
导致错误:
java.lang.RuntimeException: No such field date in StructType(ArrayBuffer(StructField($date,LongType,true)))
...
使用$
为我们的字段名称添加前缀也会产生不同类型的错误:
scala> sqlContext.sql("select cId from accomplishmentEvent where receivedDate.$date > '1970-01-01' limit 5").collect.foreach(println)
java.lang.RuntimeException: [1.69] failure: ``UNION'' expected but ErrorToken(illegal character) found
select actualConsumerId from accomplishmentEvent where receivedDate.$date > '1970-01-01' limit 5
显然,我不知道如何选择以这种方式存储的日期 - 任何人都可以帮助我填补这个空白吗?
我对Scala和Spark都比较新,所以如果这是一个基本问题,请原谅我,但我的搜索在论坛和Spark文档中都显示为空。
谢谢。
答案 0 :(得分:1)
您的JSON不平坦,因此需要使用限定名称(例如dateCreated.$date
)来解决顶层以下的字段。您的特定日期字段均为long
类型,因此您需要对它们进行数值比较,看起来您正在进行这些操作。
另一个问题是你的字段名称有&#34; $&#34;字符,Spark SQL不会让你查询它们。一种解决方案是,不是直接以SchemaRDD
(正如您所做)读取JSON,而是首先将其作为RDD[String]
读取,使用map
方法执行Scala字符串操作您的选择,然后使用SQLContext
&#39; jsonRDD
方法创建SchemaRDD
。
val lines = sc.textFile(...)
// you may want something less naive than global replacement of all "$" chars
val linesFixed = lines.map(s => s.replaceAllLiterally("$", ""))
val accEvt = sqlContext.jsonRDD(linesFixed)
我已经使用Spark 1.1.0对此进行了测试。
作为参考,我在this bug report和其他人可能已经注意到Spark SQL中缺少引用功能,而且最近修复程序似乎checked in,但需要一些时间才能进入发布