我很难理解生成SNR(db)与MSE图的背后的逻辑。通过改变噪声功率来产生不同的信噪比(SNR)。 MSE的公式是T
个独立运行的平均值。
对于每个SNR
,我生成NEval = 10 time series
。当SNR在[0:5:50]范围内时,如何正确绘制SNR与MSE的关系图?下面是伪代码。
N = 100; %Number_data_points
NEval = 10; %Number_of_different_Signals
Snr = [0:5:50];
T = 1000; %Number of independent runs
MSE = [1];
for I = 1:T
for snr = 1: length(Snr)
for expt = 1:NEval
%generate signal
w0=0.001; phi=rand(1);
signal = sin(2*pi*[1:N]*w0+phi);
% add zero mean Gaussian noise
noisy_signal = awgn(signal,Snr(snr),'measured');
% Call Estimation algorithm
%Calculate error
end
end
end
plot(Snr,MSE); %Where and how do I calculate this MSE
答案 0 :(得分:0)
如此处所解释的(http://www.mathworks.nl/help/vision/ref/psnr.html)或其他类似的来源,MSE只是原始信号和损坏信号之间的均方误差。在你的符号中,
w0=0.001;
signal = sin(2*pi*[1:N]*w0);
MSE = zeros(T*Neval,length(Snr));
for snr = 1:length(Snr)
for I = 1:T*Neval %%note, T and Neval play the same role in your pseudo code
noisy_signal = awgn(sin(2*pi*[1:N]*w0+rand(1)),Snr(snr),'measured');
MSE(I,snr) = mean((noisy_signal - signal).^2);
end
end
semilogy(Snr, mean(MSE)) %%to express MSE in the log (dB-like) units
对于不同长度信号的情况:
w0=0.001;
Npoints = [250,500,1000];
MSE = zeros(T,length(Npoints),length(Snr));
for snr = 1:length(Snr)
for ip = 1:length(Npoints)
signal = sin(2*pi*[1:Npoints(ip)]*w0);
for I = 1:T
noisy_signal = awgn(sin(2*pi*[1:Npoints(ip)]*w0+rand(1)),Snr(snr),'measured');
MSE(I,ip,snr) = mean((noisy_signal - signal).^2);
end
end
end
semilogy(Snr, squeeze(mean(mean(MSE,1),2)) )