我想要以各种方式解析数十万个文本文件。我想将输出保存到单个文件而不会出现同步问题。我一直在使用多处理池来节省时间,但我无法弄清楚如何组合池和队列。
以下代码将保存infile名称以及文件中连续" x" s的最大数量。但是,我希望所有进程将结果保存到同一个文件,而不是像我的示例中那样保存到不同的文件。对此的任何帮助将不胜感激。
import multiprocessing
with open('infilenamess.txt') as f:
filenames = f.read().splitlines()
def mp_worker(filename):
with open(filename, 'r') as f:
text=f.read()
m=re.findall("x+", text)
count=len(max(m, key=len))
outfile=open(filename+'_results.txt', 'a')
outfile.write(str(filename)+'|'+str(count)+'\n')
outfile.close()
def mp_handler():
p = multiprocessing.Pool(32)
p.map(mp_worker, filenames)
if __name__ == '__main__':
mp_handler()
答案 0 :(得分:29)
多处理池为您实现队列。只需使用池方法将工作者返回值返回给调用者。 imap效果很好:
import multiprocessing
import re
def mp_worker(filename):
with open(filename) as f:
text = f.read()
m = re.findall("x+", text)
count = len(max(m, key=len))
return filename, count
def mp_handler():
p = multiprocessing.Pool(32)
with open('infilenamess.txt') as f:
filenames = [line for line in (l.strip() for l in f) if line]
with open('results.txt', 'w') as f:
for result in p.imap(mp_worker, filenames):
# (filename, count) tuples from worker
f.write('%s: %d\n' % result)
if __name__=='__main__':
mp_handler()
答案 1 :(得分:4)
我接受了接受的答案,并将其简化为我自己对其工作原理的理解。我在这里发布它,以防它帮助其他人。
import multiprocessing
def mp_worker(number):
number += 1
return number
def mp_handler():
p = multiprocessing.Pool(32)
numbers = list(range(1000))
with open('results.txt', 'w') as f:
for result in p.imap(mp_worker, numbers):
f.write('%d\n' % result)
if __name__=='__main__':
mp_handler()
答案 2 :(得分:1)
这是我使用multiprocessing Manager对象的方法。这种方法的好处是,当处理掉到了run_multi()函数中的带有块的管理器时,文件编写器队列将自动关闭,从而使代码非常易于阅读,并且无需麻烦就可以停止监听队列。 / p>
from functools import partial
from multiprocessing import Manager, Pool, Queue
from random import randint
import time
def run_multi():
input = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
with Manager() as manager:
pool = Pool() # By default pool will size depending on cores available
message_queue = manager.Queue() # Queue for sending messages to file writer listener
pool.apply_async(file_writer, (message_queue, )) # Start file listener ahead of doing the work
pool.map(partial(worker, message_queue=message_queue), input) # Partial function allows us to use map to divide workload
def worker(input: int, message_queue: Queue):
message_queue.put(input * 10)
time.sleep(randint(1, 5)) # Simulate hard work
def file_writer(message_queue: Queue):
with open("demo.txt", "a") as report:
while True:
report.write(f"Value is: {message_queue.get()}\n")
if __name__ == "__main__":
run_multi()