我有2个变量......输入数N和历史M的长度。这两个变量决定矩阵V的大小,即n x m,即n行,m列。
我很难想出一种算法,它可以让我生成一定数量的排列(或序列,你认为合适的方式)。
如果有人可以帮助我使用算法,我会很高兴,如果可能的话,在Matlab中,但伪算法也会非常好。
我举三个例子:
(如果您不熟悉matlab矩阵表示法,,
分隔列,;
分隔行。)
V(1) = [1,0,0]
V(2) = [0,1,0]
V(3) = [0,0,1]
排列是:
V(1) = [1,0,0; 1,0,0]
V(2) = [1,0,0; 0,1,0]
V(3) = [1,0,0; 0,0,1]
V(4) = [0,1,0; 1,0,0]
V(5) = [0,1,0; 0,1,0]
V(6) = [0,1,0; 0,0,1]
V(7) = [0,0,1; 1,0,0]
V(8) = [0,0,1; 0,1,0]
V(9) = [0,0,1; 0,0,1]
排列是:
V(1) = [1,0,0,0; 1,0,0,0; 1,0,0,0]
V(2) = [1,0,0,0; 1,0,0,0; 0,1,0,0]
V(3) = [1,0,0,0; 1,0,0,0; 0,0,1,0]
V(4) = [1,0,0,0; 1,0,0,0; 0,0,0,1]
V(5) = [1,0,0,0; 0,1,0,0; 1,0,0,0]
...
V(8) = [1,0,0,0; 0,1,0,0; 0,0,0,1]
V(9) = [1,0,0,0; 0,0,1,0; 1,0,0,0]
...
V(16) = [1,0,0,0; 0,0,0,1; 0,0,0,1]
V(17) = [0,1,0,0; 1,0,0,0; 1,0,0,0]
...
V(64) = [0,0,0,1; 0,0,0,1; 0,0,0,1]
编辑:我刚刚找到了一种方法来生成非常大的矩阵W,其中每一行代表V(i)
对于第一种情况:
W = eye(3)
此处eye(k)
创建大小为k x k
对于第二种情况:
W = [kron(eye(3), ones(3,1)), ...
kron(ones(3,1), eye(3))]
此处kron
是大小为k x l的kronecker product和ones(k,l)
creates a matrix with ones
对于第三种情况:
W = [kron(kron(eye(4), ones(4,1)), ones(4,1)), ...
kron(kron(ones(4,1), eye(4)), ones(4,1)), ...
kron(kron(ones(4,1), ones(4,1)), eye(4))]
现在我们创建了矩阵W,其中每行代表矢量形式的V(i),V(i)还不是矩阵。
观察两件事:
答案 0 :(得分:3)
我想这可以满足您的所有要求。即使订单对我来说也是正确的:
M=3;N=3;
mat1=eye(M+1);
vectors=mat2cell(repmat(1:M+1,N,1),ones(N,1),[M+1]);
超高效笛卡尔积,取自here:
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
n = numel(vectors); %// number of vectors
combs = cell(1,n); %// pre-define to generate comma-separated list
[combs{end:-1:1}] = ndgrid(vectors{end:-1:1}); %// the reverse order in these two
%// comma-separated lists is needed to produce the rows of the result matrix in
%// lexicographical order
combs = cat(n+1, combs{:}); %// concat the n n-dim arrays along dimension n+1
combs = reshape(combs,[],n); %// reshape to obtain desired matrix
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
V=cell(size(combs,1),1);
for i=1:size(combs,1)
for j=1:size(combs,2)
V{i,1}=[V{i,1};mat1(combs(i,j),:)];
end
end
输出:
M=2,N=2;
V=
[1,0,0;1,0,0]
[1,0,0;0,1,0]
[1,0,0;0,0,1]
[0,1,0;1,0,0]
[0,1,0;0,1,0]
[0,1,0;0,0,1]
[0,0,1;1,0,0]
[0,0,1;0,1,0]
[0,0,1;0,0,1]
M=3;N=3; %order verified for the indices given in the question
V(1) = [1,0,0,0; 1,0,0,0; 1,0,0,0]
V(2) = [1,0,0,0; 1,0,0,0; 0,1,0,0]
V(3) = [1,0,0,0; 1,0,0,0; 0,0,1,0]
V(4) = [1,0,0,0; 1,0,0,0; 0,0,0,1]
V(5) = [1,0,0,0; 0,1,0,0; 1,0,0,0]
...
V(8) = [1,0,0,0; 0,1,0,0; 0,0,0,1]
V(9) = [1,0,0,0; 0,0,1,0; 1,0,0,0]
...
V(16) = [1,0,0,0; 0,0,0,1; 0,0,0,1]
V(17) = [0,1,0,0; 1,0,0,0; 1,0,0,0]
...
V(64) = [0,0,0,1; 0,0,0,1; 0,0,0,1]
答案 1 :(得分:2)
您可以通过考虑基数为M + 1的输入来生成这些。
此基数中的每个数字指定矩阵的哪一部分应在每行中设置为1。
function V=makeperm(i,N,M)
i = i - 1;
V = zeros(N,M+1);
P = M+1;
% Generate digits in base P
for row = N:-1:1
col=mod(i,P)+1;
i=floor(i/P);
V(row,col)=1;
end
此函数将为N,M的输入产生第i个排列。
e.g。
makeperm(17,3,3)
ans =
0 1 0 0
1 0 0 0
1 0 0 0
答案 2 :(得分:2)
此代码使用allcomb tool from MATLAB file-exchange
生成与V
的每一行对应的十进制数字。 allcomb
的代码可以从here获得。
解决上述问题的工作代码是 -
power_vals = power(2,M:-1:0);
pattern1 = repmat({power_vals},1,N);
dec_nums = allcomb(pattern1{:});
bin_nums = fliplr(de2bi(num2str(dec_nums,'%1d').'-'0')); %//'
Vout = permute(reshape(bin_nums,N,size(bin_nums,1)/N,[]),[1 3 2]);
因此,nth
的{{1}} 3D切片将代表Vout
。
示例运行 -
使用V(n)
和M = 2
,您将拥有 -
N = 2