我正在尝试阅读和解析人口普查局美国社区调查公共使用微样本数据发布的数据字典,如here所示。
它的结构相当合理,但有一些失误,其中插入了一些解释性说明。
我认为我的首选结果是获取每个变量一行的数据帧,并将给定变量的所有值标签序列化为存储在同一行的值字典字段中的一个字典(尽管是类似层次结构的json格式不会坏,但更复杂。
我收到了以下代码:
import pandas as pd
import re
import urllib2
data = urllib2.urlopen('http://www.census.gov/acs/www/Downloads/data_documentation/pums/DataDict/PUMSDataDict13.txt')
## replace newline characters so we can use dots and find everything until a double
## carriage return (replaced to ||) with a lookahead assertion.
data=data.replace('\n','|')
datadict=pd.DataFrame(re.findall("([A-Z]{2,8})\s{2,9}([0-9]{1})\s{2,6}\|\s{2,4}([A-Za-z\-\(\) ]{3,85})",data,re.MULTILINE),columns=['variable','width','description'])
datadict.head(5)
+----+----------+-------+------------------------------------------------+
| | variable | width | description |
+----+----------+-------+------------------------------------------------+
| 0 | RT | 1 | Record Type |
+----+----------+-------+------------------------------------------------+
| 1 | SERIALNO | 7 | Housing unit |
+----+----------+-------+------------------------------------------------+
| 2 | DIVISION | 1 | Division code |
+----+----------+-------+------------------------------------------------+
| 3 | PUMA | 5 | Public use microdata area code (PUMA) based on |
+----+----------+-------+------------------------------------------------+
| 4 | REGION | 1 | Region code |
+----+----------+-------+------------------------------------------------+
| 5 | ST | 2 | State Code |
+----+----------+-------+------------------------------------------------+
到目前为止一切顺利。存在变量列表,以及每个变量的宽度。
我可以扩展它并获得额外的行(值标签所在的位置),如下所示:
datadict_exp=pd.DataFrame(
re.findall("([A-Z]{2,9})\s{2,9}([0-9]{1})\s{2,6}\|\s{4}([A-Za-z\-\(\)\;\<\> 0-9]{2,85})\|\s{11,15}([a-z0-9]{0,2})[ ]\.([A-Za-z/\-\(\) ]{2,120})",
data,re.MULTILINE))
datadict_exp.head(5)
+----+----------+-------+---------------------------------------------------+---------+--------------+
| id | variable | width | description | value_1 | label_1 |
+----+----------+-------+---------------------------------------------------+---------+--------------+
| 0 | DIVISION | 1 | Division code | 0 | Puerto Rico |
+----+----------+-------+---------------------------------------------------+---------+--------------+
| 1 | REGION | 1 | Region code | 1 | Northeast |
+----+----------+-------+---------------------------------------------------+---------+--------------+
| 2 | ST | 2 | State Code | 1 | Alabama/AL |
+----+----------+-------+---------------------------------------------------+---------+--------------+
| 3 | NP | 2 | Number of person records following this housin... | 0 | Vacant unit |
+----+----------+-------+---------------------------------------------------+---------+--------------+
| 4 | TYPE | 1 | Type of unit | 1 | Housing unit |
+----+----------+-------+---------------------------------------------------+---------+--------------+
这样就获得了第一个值和相关标签。我的正则表达式问题在于如何重复从\s{11,15}
开始到结尾的多行匹配 - 即。一些变量有很多独特的值(ST
或state code
后面跟着大约50行,表示每个州的值和标签。)
我用管道改变了源文件中回车的早期,认为我可以无耻地依赖点来匹配所有内容,直到双回车,表明该特定变量的结束,这就是我的位置卡住了。
那么 - 如何重复多行模式任意次数。
(后来的一个复杂因素是字典中没有完全枚举某些变量,但是显示的是有效的值范围。NP
例如[与同一家庭相关联的人数],用`02..20`跟随描述。如果我不解释这个问题,我的解析当然会错过这些条目。)
答案 0 :(得分:1)
这不是正则表达式,但我使用下面的Python 3x脚本解析了PUMSDataDict2013.txt
和PUMS_Data_Dictionary_2009-2013.txt
(Census ACS 2013 documentation,FTP server)。我使用pandas.DataFrame.from_dict
和pandas.concat
创建了一个分层数据框,也在下面。
Python 3x函数用于解析PUMSDataDict2013.txt
和PUMS_Data_Dictionary_2009-2013.txt
:
import collections
import os
def parse_pumsdatadict(path:str) -> collections.OrderedDict:
r"""Parse ACS PUMS Data Dictionaries.
Args:
path (str): Path to downloaded data dictionary.
Returns:
ddict (collections.OrderedDict): Parsed data dictionary with original
key order preserved.
Raises:
FileNotFoundError: Raised if `path` does not exist.
Notes:
* Only some data dictionaries have been tested.[^urls]
* Values are all strings. No data types are inferred from the
original file.
* Example structure of returned `ddict`:
ddict['title'] = '2013 ACS PUMS DATA DICTIONARY'
ddict['date'] = 'August 7, 2015'
ddict['record_types']['HOUSING RECORD']['RT']\
['length'] = '1'
['description'] = 'Record Type'
['var_codes']['H'] = 'Housing Record or Group Quarters Unit'
ddict['record_types']['HOUSING RECORD'][...]
ddict['record_types']['PERSON RECORD'][...]
ddict['notes'] =
['Note for both Industry and Occupation lists...',
'* In cases where the SOC occupation code ends...',
...]
References:
[^urls]: http://www2.census.gov/programs-surveys/acs/tech_docs/pums/data_dict/
PUMSDataDict2013.txt
PUMS_Data_Dictionary_2009-2013.txt
"""
# Check arguments.
if not os.path.exists(path):
raise FileNotFoundError(
"Path does not exist:\n{path}".format(path=path))
# Parse data dictionary.
# Note:
# * Data dictionary keys and values are "codes for variables",
# using the ACS terminology,
# https://www.census.gov/programs-surveys/acs/technical-documentation/pums/documentation.html
# * The data dictionary is not all encoded in UTF-8. Replace encoding
# errors when found.
# * Catch instances of inconsistently formatted data.
ddict = collections.OrderedDict()
with open(path, encoding='utf-8', errors='replace') as fobj:
# Data dictionary name is line 1.
ddict['title'] = fobj.readline().strip()
# Data dictionary date is line 2.
ddict['date'] = fobj.readline().strip()
# Initialize flags to catch lines.
(catch_var_name, catch_var_desc,
catch_var_code, catch_var_note) = (None, )*4
var_name = None
var_name_last = 'PWGTP80' # Necessary for unformatted end-of-file notes.
for line in fobj:
# Replace tabs with 4 spaces
line = line.replace('\t', ' '*4).rstrip()
# Record type is section header 'HOUSING RECORD' or 'PERSON RECORD'.
if (line.strip() == 'HOUSING RECORD'
or line.strip() == 'PERSON RECORD'):
record_type = line.strip()
if 'record_types' not in ddict:
ddict['record_types'] = collections.OrderedDict()
ddict['record_types'][record_type] = collections.OrderedDict()
# A newline precedes a variable name.
# A newline follows the last variable code.
elif line == '':
# Example inconsistent format case:
# WGTP54 5
# Housing Weight replicate 54
#
# -9999..09999 .Integer weight of housing unit
if (catch_var_code
and 'var_codes' not in ddict['record_types'][record_type][var_name]):
pass
# Terminate the previous variable block and look for the next
# variable name, unless past last variable name.
else:
catch_var_code = False
catch_var_note = False
if var_name != var_name_last:
catch_var_name = True
# Variable name is 1 line with 0 space indent.
# Variable name is followed by variable description.
# Variable note is optional.
# Variable note is preceded by newline.
# Variable note is 1+ lines.
# Variable note is followed by newline.
elif (catch_var_name and not line.startswith(' ')
and var_name != var_name_last):
# Example: "Note: Public use microdata areas (PUMAs) ..."
if line.lower().startswith('note:'):
var_note = line.strip() # type(var_note) == str
if 'notes' not in ddict['record_types'][record_type][var_name]:
ddict['record_types'][record_type][var_name]['notes'] = list()
# Append a new note.
ddict['record_types'][record_type][var_name]['notes'].append(var_note)
catch_var_note = True
# Example: """
# Note: Public Use Microdata Areas (PUMAs) designate areas ...
# population. Use with ST for unique code. PUMA00 applies ...
# ...
# """
elif catch_var_note:
var_note = line.strip() # type(var_note) == str
if 'notes' not in ddict['record_types'][record_type][var_name]:
ddict['record_types'][record_type][var_name]['notes'] = list()
# Concatenate to most recent note.
ddict['record_types'][record_type][var_name]['notes'][-1] += ' '+var_note
# Example: "NWAB 1 (UNEDITED - See 'Employment Status Recode' (ESR))"
else:
# type(var_note) == list
(var_name, var_len, *var_note) = line.strip().split(maxsplit=2)
ddict['record_types'][record_type][var_name] = collections.OrderedDict()
ddict['record_types'][record_type][var_name]['length'] = var_len
# Append a new note if exists.
if len(var_note) > 0:
if 'notes' not in ddict['record_types'][record_type][var_name]:
ddict['record_types'][record_type][var_name]['notes'] = list()
ddict['record_types'][record_type][var_name]['notes'].append(var_note[0])
catch_var_name = False
catch_var_desc = True
var_desc_indent = None
# Variable description is 1+ lines with 1+ space indent.
# Variable description is followed by variable code(s).
# Variable code(s) is 1+ line with larger whitespace indent
# than variable description. Example:"""
# PUMA00 5
# Public use microdata area code (PUMA) based on Census 2000 definition for data
# collected prior to 2012. Use in combination with PUMA10.
# 00100..08200 .Public use microdata area codes
# 77777 .Combination of 01801, 01802, and 01905 in Louisiana
# -0009 .Code classification is Not Applicable because data
# .collected in 2012 or later
# """
# The last variable code is followed by a newline.
elif (catch_var_desc or catch_var_code) and line.startswith(' '):
indent = len(line) - len(line.lstrip())
# For line 1 of variable description.
if catch_var_desc and var_desc_indent is None:
var_desc_indent = indent
var_desc = line.strip()
ddict['record_types'][record_type][var_name]['description'] = var_desc
# For lines 2+ of variable description.
elif catch_var_desc and indent <= var_desc_indent:
var_desc = line.strip()
ddict['record_types'][record_type][var_name]['description'] += ' '+var_desc
# For lines 1+ of variable codes.
else:
catch_var_desc = False
catch_var_code = True
is_valid_code = None
if not line.strip().startswith('.'):
# Example case: "01 .One person record (one person in household or"
if ' .' in line:
(var_code, var_code_desc) = line.strip().split(
sep=' .', maxsplit=1)
is_valid_code = True
# Example inconsistent format case:"""
# bbbb. N/A (age less than 15 years; never married)
# """
elif '. ' in line:
(var_code, var_code_desc) = line.strip().split(
sep='. ', maxsplit=1)
is_valid_code = True
else:
raise AssertionError(
"Program error. Line unaccounted for:\n" +
"{line}".format(line=line))
if is_valid_code:
if 'var_codes' not in ddict['record_types'][record_type][var_name]:
ddict['record_types'][record_type][var_name]['var_codes'] = collections.OrderedDict()
ddict['record_types'][record_type][var_name]['var_codes'][var_code] = var_code_desc
# Example case: ".any person in group quarters)"
else:
var_code_desc = line.strip().lstrip('.')
ddict['record_types'][record_type][var_name]['var_codes'][var_code] += ' '+var_code_desc
# Example inconsistent format case:"""
# ADJHSG 7
# Adjustment factor for housing dollar amounts (6 implied decimal places)
# """
elif (catch_var_desc and
'description' not in ddict['record_types'][record_type][var_name]):
var_desc = line.strip()
ddict['record_types'][record_type][var_name]['description'] = var_desc
catch_var_desc = False
catch_var_code = True
# Example inconsistent format case:"""
# WGTP10 5
# Housing Weight replicate 10
# -9999..09999 .Integer weight of housing unit
# WGTP11 5
# Housing Weight replicate 11
# -9999..09999 .Integer weight of housing unit
# """
elif ((var_name == 'WGTP10' and 'WGTP11' in line)
or (var_name == 'YOEP12' and 'ANC' in line)):
# type(var_note) == list
(var_name, var_len, *var_note) = line.strip().split(maxsplit=2)
ddict['record_types'][record_type][var_name] = collections.OrderedDict()
ddict['record_types'][record_type][var_name]['length'] = var_len
if len(var_note) > 0:
if 'notes' not in ddict['record_types'][record_type][var_name]:
ddict['record_types'][record_type][var_name]['notes'] = list()
ddict['record_types'][record_type][var_name]['notes'].append(var_note[0])
catch_var_name = False
catch_var_desc = True
var_desc_indent = None
else:
if (catch_var_name, catch_var_desc,
catch_var_code, catch_var_note) != (False, )*4:
raise AssertionError(
"Program error. All flags to catch lines should be set " +
"to `False` by end-of-file.")
if var_name != var_name_last:
raise AssertionError(
"Program error. End-of-file notes should only be read "+
"after `var_name_last` has been processed.")
if 'notes' not in ddict:
ddict['notes'] = list()
ddict['notes'].append(line)
return ddict
创建分层数据框(下面格式为Jupyter Notebook单元格):
In [ ]:
import pandas as pd
ddict = parse_pumsdatadict(path=r'/path/to/PUMSDataDict2013.txt')
tmp = dict()
for record_type in ddict['record_types']:
tmp[record_type] = pd.DataFrame.from_dict(ddict['record_types'][record_type], orient='index')
df_ddict = pd.concat(tmp, names=['record_type', 'var_name'])
df_ddict.head()
Out[ ]:
# Click "Run code snippet" below to render the output from `df_ddict.head()`.
<table border="1" class="dataframe">
<thead>
<tr style="text-align: right;">
<th></th>
<th></th>
<th>length</th>
<th>description</th>
<th>var_codes</th>
<th>notes</th>
</tr>
<tr>
<th>record_type</th>
<th>var_name</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<th rowspan="5" valign="top">HOUSING RECORD</th>
<th>ACCESS</th>
<td>1</td>
<td>Access to the Internet</td>
<td>{'b': 'N/A (GQ)', '1': 'Yes, with subscription...</td>
<td>NaN</td>
</tr>
<tr>
<th>ACR</th>
<td>1</td>
<td>Lot size</td>
<td>{'b': 'N/A (GQ/not a one-family house or mobil...</td>
<td>NaN</td>
</tr>
<tr>
<th>ADJHSG</th>
<td>7</td>
<td>Adjustment factor for housing dollar amounts (...</td>
<td>{'1000000': '2013 factor (1.000000)'}</td>
<td>[Note: The value of ADJHSG inflation-adjusts r...</td>
</tr>
<tr>
<th>ADJINC</th>
<td>7</td>
<td>Adjustment factor for income and earnings doll...</td>
<td>{'1007549': '2013 factor (1.007549)'}</td>
<td>[Note: The value of ADJINC inflation-adjusts r...</td>
</tr>
<tr>
<th>AGS</th>
<td>1</td>
<td>Sales of Agriculture Products (Yearly sales)</td>
<td>{'b': 'N/A (GQ/vacant/not a one family house o...</td>
<td>[Note: no adjustment factor is applied to AGS.]</td>
</tr>
</tbody>
</table>