我已经阅读了一个csv文件并将其转换为以下结构:
pivoted = df.pivot('user_id', 'group', 'value')
lookup = df.drop_duplicates('user_id')[['user_id', 'group']]
lookup.set_index(['user_id'], inplace=True)
result = pivoted.join(lookup)
result = result.fillna(0)
结果部分:
0 1 2 3 4 5 6 7 8 9 10 11 12 13 group
user_id
2 33653 2325 916 720 867 187 31 0 6 3 42 56 92 15 l-1
4 18895 414 1116 570 1190 55 92 0 122 23 78 6 4 2 l-2
16 1383 70 27 17 17 1 0 0 0 0 1 0 0 0 l-2
50 396 72 34 5 18 0 0 0 0 0 0 0 0 0 l-3
51 3915 1170 402 832 2791 316 12 5 118 51 32 9 62 27 l-4
我希望每行按第0列到第13列求和,并将每个单元格除以该行的总和。我还是习惯了大熊猫;如果我理解正确的话,我们应该在做这样的事情时尽量避免循环?换句话说,我怎样才能在大熊猫中做到这一点。办法?
答案 0 :(得分:39)
尝试以下方法:
In [1]: import pandas as pd
In [2]: df = pd.read_csv("test.csv")
In [3]: df
Out[3]:
id value1 value2 value3
0 A 1 2 3
1 B 4 5 6
2 C 7 8 9
In [4]: df["sum"] = df.sum(axis=1)
In [5]: df
Out[5]:
id value1 value2 value3 sum
0 A 1 2 3 6
1 B 4 5 6 15
2 C 7 8 9 24
In [6]: df_new = df.loc[:,"value1":"value3"].div(df["sum"], axis=0)
In [7]: df_new
Out[7]:
value1 value2 value3
0 0.166667 0.333333 0.500
1 0.266667 0.333333 0.400
2 0.291667 0.333333 0.375
或者您可以执行以下操作:
In [8]: df.loc[:,"value1":"value3"] = df.loc[:,"value1":"value3"].div(df["sum"], axis=0)
In [9]: df
Out[9]:
id value1 value2 value3 sum
0 A 0.166667 0.333333 0.500 6
1 B 0.266667 0.333333 0.400 15
2 C 0.291667 0.333333 0.375 24
或者从头开始直接上升:
In [10]: df = pd.read_csv("test.csv")
In [11]: df
Out[11]:
id value1 value2 value3
0 A 1 2 3
1 B 4 5 6
2 C 7 8 9
In [12]: df.loc[:,"value1":"value3"] = df.loc[:,"value1":"value3"].div(df.sum(axis=1), axis=0)
In [13]: df
Out[13]:
id value1 value2 value3
0 A 0.166667 0.333333 0.500
1 B 0.266667 0.333333 0.400
2 C 0.291667 0.333333 0.375
将列value1
等更改为标题应该会有类似的效果。
答案 1 :(得分:31)
更简单:
result.div(result.sum(axis=1), axis=0)
(编辑使用代码突出显示)
答案 2 :(得分:8)
每列更容易工作:
df = pd.DataFrame([[1,2,3],[4,5,6],[7,8,9]])
(df.T / df.T.sum()).T
结果:
0 1 2
0 0.166667 0.333333 0.500
1 0.266667 0.333333 0.400
2 0.291667 0.333333 0.375
答案 3 :(得分:4)
以下似乎对我很好:
In [39]:
cols = ['0','1','2','3','4','5','6','7','8','9','10','11','12','13']
result[cols] = result[cols].apply(lambda row: row / row.sum(axis=1), axis=1)
result
Out[39]:
0 1 2 3 4 5 6 \
user_id
2 0.864827 0.059749 0.023540 0.018503 0.022280 0.004806 0.000797
4 0.837285 0.018345 0.049453 0.025258 0.052732 0.002437 0.004077
16 0.912269 0.046174 0.017810 0.011214 0.011214 0.000660 0.000000
50 0.754286 0.137143 0.064762 0.009524 0.034286 0.000000 0.000000
51 0.401868 0.120099 0.041265 0.085403 0.286491 0.032437 0.001232
7 8 9 10 11 12 13 \
user_id
2 0.000000 0.000154 0.000077 0.001079 0.001439 0.002364 0.000385
4 0.000000 0.005406 0.001019 0.003456 0.000266 0.000177 0.000089
16 0.000000 0.000000 0.000000 0.000660 0.000000 0.000000 0.000000
50 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
51 0.000513 0.012113 0.005235 0.003285 0.000924 0.006364 0.002772
group
user_id
2 l-1
4 l-2
16 l-2
50 l-3
51 l-4
确定刮擦上面的内容,以下内容会快得多:
result[cols] = result[cols].div(result[cols].sum(axis=1), axis=0)
只是为了证明结果是一样的:
In [47]:
cols = ['0','1','2','3','4','5','6','7','8','9','10','11','12','13']
np.alltrue(result[cols].div(result[cols].sum(axis=1), axis=0) == result[cols].apply(lambda row: row / row.sum(axis=1), axis=1))
Out[47]:
True
而且它更快:
In [48]:
cols = ['0','1','2','3','4','5','6','7','8','9','10','11','12','13']
%timeit result[cols].div(result[cols].sum(axis=1), axis=0)
%timeit result[cols].apply(lambda row: row / row.sum(axis=1), axis=1)
100 loops, best of 3: 2.38 ms per loop
100 loops, best of 3: 4.47 ms per loop