我有以下代码,但不太明白为什么它会抛出警告。我已经阅读了documentation,但仍然无法理解为什么这种用法会导致警告。任何见解都将不胜感激。
>>> df = pandas.DataFrame({'a': [1,2,3,4,5,6,7], 'b': [11,22,33,44,55,66,77]})
>>> reduced_df = df[df['a'] > 3]
>>> reduced_df
a b
3 4 44
4 5 55
5 6 66
6 7 77
>>> reduced_df['a'] /= 3
Warning (from warnings module):
File "__main__", line 1
SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_index,col_indexer] = value instead
>>> reduced_df
a b
3 1.333333 44
4 1.666667 55
5 2.000000 66
6 2.333333 77
答案 0 :(得分:6)
此处的警告是告诉您,尽管出现reduced_df
df
并不是对In [14]:
foo = [0]
bar = foo
bar.append(1)
print(foo,bar)
[0, 1] [0, 1]
切片的引用,但实际上是副本。这与普通语义不同,人们会期望这会导致引用,并且对该引用的修改将影响引用和原始对象(当然,对于可变对象):
In [18]:
df.loc[df['a']>3,'a'] =df['a']/3
df
Out[18]:
a b
0 1.000000 11
1 2.000000 22
2 3.000000 33
3 1.333333 44
4 1.666667 55
5 2.000000 66
6 2.333333 77
因此,如果您想要修改df的特定切片,那么您应该执行警告建议:
copy()
或者制作一个明确的深层副本,调用In [20]:
reduced_df = df[df['a'] > 3].copy()
reduced_df['a'] /=3
reduced_df
Out[20]:
a b
3 1.333333 44
4 1.666667 55
5 2.000000 66
6 2.333333 77
In [21]:
# orig df is unmodified
df
Out[21]:
a b
0 1 11
1 2 22
2 3 33
3 4 44
4 5 55
5 6 66
6 7 77
并修改副本而不会产生任何警告:
{{1}}