在scikit中使用稀疏矩阵的正确方法是什么?

时间:2014-10-23 15:53:06

标签: python scikit-learn sparse-matrix logistic-regression

我正在尝试使用稀疏矩阵完成分类任务。当我将训练集传递给逻辑回归函数时,在scikit中,它会返回以下错误:

ValueError: Array contains NaN or infinity.

我作为逻辑回归的参数传递的矩阵类型是scipy.sparse.csr.csr_matrix

这是我用NaNs的numpy数组创建稀疏矩阵的方法:

X=sparse.csr_matrix(X_hat)

我做错了什么?我得到了与train_test_split相同的错误,根据文档,这些函数应该接受稀疏矩阵作为参数。

我正在使用0.14版本的scikit-learn。

更新: 这是完整的TraceBack。

---------------------------------------------------------------------------
ValueError                                Traceback (most recent call last)
<ipython-input-65-acdaac419166> in <module>()
      1 
----> 2 model2.fit(X_train, y_train)

C:\Anaconda\lib\site-packages\sklearn\svm\base.pyc in fit(self, X, y)
    666                              " one.")
    667 
--> 668         X = atleast2d_or_csr(X, dtype=np.float64, order="C")
    669 
    670         self.class_weight_ = compute_class_weight(self.class_weight,

C:\Anaconda\lib\site-packages\sklearn\utils\validation.pyc in atleast2d_or_csr(X, dtype, order, copy, force_all_finite)
    132     """
    133     return _atleast2d_or_sparse(X, dtype, order, copy, sparse.csr_matrix,
--> 134                                 "tocsr", force_all_finite)
    135 
    136 

C:\Anaconda\lib\site-packages\sklearn\utils\validation.pyc in _atleast2d_or_sparse(X, dtype, order, copy, sparse_class, convmethod, force_all_finite)
    105             X = sparse_class(X, dtype=dtype)
    106         if force_all_finite:
--> 107             _assert_all_finite(X.data)
    108         X.data = np.array(X.data, copy=False, order=order)
    109     else:

C:\Anaconda\lib\site-packages\sklearn\utils\validation.pyc in _assert_all_finite(X)
     25     if (X.dtype.char in np.typecodes['AllFloat'] and not np.isfinite(X.sum())
     26             and not np.isfinite(X).all()):
---> 27         raise ValueError("Array contains NaN or infinity.")
     28 
     29 

ValueError: Array contains NaN or infinity.

0 个答案:

没有答案