这不是作业。
我看到了this article praising Linq library and how great it is做组合术的事情,我心想:Python可以用更易读的方式做到。
用Python轻拍半小时后,我失败了。请在我离开的地方完成。另外,请以最恐怖和最有效的方式来做。
from itertools import permutations
from operator import mul
from functools import reduce
glob_lst = []
def divisible(n): return (sum(j*10^i for i,j in enumerate(reversed(glob_lst))) % n == 0)
oneToNine = list(range(1, 10))
twoToNine = oneToNine[1:]
for perm in permutations(oneToNine, 9):
for n in twoToNine:
glob_lst = perm[1:n]
#print(glob_lst)
if not divisible(n):
continue
else:
# Is invoked if the loop succeeds
# So, we found the number
print(perm)
谢谢!
答案 0 :(得分:24)
这是一个简短的解决方案,使用itertools.permutations:
from itertools import permutations
def is_solution(seq):
return all(int(seq[:i]) % i == 0 for i in range(2, 9))
for p in permutations('123456789'):
seq = ''.join(p)
if is_solution(seq):
print(seq)
我故意省略了1和9的可分性检查,因为它们总会得到满足。
答案 1 :(得分:3)
这是我的解决方案。我喜欢自下而上的所有事情;-)。在我的机器上,它比Marks:
快580倍(3.1毫秒对1.8秒)def generate(digits, remaining=set('123456789').difference):
return (n + m
for n in generate(digits - 1)
for m in remaining(n)
if int(n + m) % digits == 0) if digits > 0 else ['']
for each in generate(9):
print(int(each))
编辑:此外,这是有效的,速度是原来的两倍(1.6毫秒):
from functools import reduce
def generate():
def digits(x):
while x:
x, y = divmod(x, 10)
yield y
remaining = set(range(1, 10)).difference
def gen(numbers, decimal_place):
for n in numbers:
for m in remaining(digits(n)):
number = 10 * n + m
if number % decimal_place == 0:
yield number
return reduce(gen, range(2, 10), remaining())
for each in generate():
print(int(each))
答案 2 :(得分:2)
这是我的解决方案(不像Mark那样优雅,但它仍然有效):
from itertools import permutations
for perm in permutations('123456789'):
isgood = 1
for i in xrange(9):
if(int(''.join(perm[:9-i])) % (9-i)):
isgood = 0
break
if isgood:
print ''.join(perm)
答案 3 :(得分:1)
这是我的解决方案,它与Marks非常相似,但运行速度快了两倍
from itertools import permutations
def is_solution(seq):
if seq[-1]=='9':
for i in range(8,1,-1):
n = -(9-i)
if eval(seq[:n]+'%'+str(i))==0:
continue
else:return False
return True
else:return False
for p in permutations('123456789'):
seq = ''.join(p)
if is_solution(seq):
print(seq)