长时间听众第一次打电话到S.O ... 我问的问题之前有过非常类似的问题,但我不相信我足够聪明地破译如何实施解决方案,为此我道歉。这是我发现的问题的链接: Constraints in R Multiple Integer Linear Programming
我超出了我预计的幻想点(FPTS_PREDICT_RF),受到50,000工资上限的限制,同时最小化了我提出的“风险”计算。
现在,问题出在“弹性”位置。团队需要由9个职位组成, 1 QB 2 RB 3 WR 1 TE 1 DEF 1 FLEX
flex可以是RB,WR或TE 那么,我们可以: 1 QB 2-3 RB 3-4 WR 1-2 TE 1 DEF
我正在尝试实现#RB + #WR + #TE == 7。
的约束以下是相关代码:
library(Rglpk)
# number of variables
num.players <- length(final$PLAYER)
# objective:
obj <- final$FPTS_PREDICT_RF
# the vars are represented as booleans
var.types <- rep("B", num.players)
# the constraints
matrix <- rbind(as.numeric(final$position == "QB"), # num QB
as.numeric(final$position == "RB"), # num RB
as.numeric(final$position == "WR"), # num WR
as.numeric(final$position == "TE"), # num TE
as.numeric(final$position == "DEF"),# num DEF
diag(final$riskNormalized), # player's risk
final$Salary) # total cost
direction <- c("==",
"<=",
"<=",
"<=",
"==",
rep("<=", num.players),
"<=")
rhs <- c(1, # Quartbacks
3, # Running Backs
2, # Wide Receivers
1, # Tight Ends
1, # Defense
rep(10, num.players), #HERE, you need to enter a number that indicates how
#risk you are willing to be, 1 being low risk,
# 10 being high risk. 10 is max.
50000) # By default, you get 50K to spend, so leave this number alone.
sol <- Rglpk_solve_LP(obj = obj, mat = matrix, dir = direction, rhs = rhs,
types = var.types, max = TRUE)
sol #Projected Fantasy Points
有人可以帮我实现这个约束吗? 非常感谢任何帮助!
编辑:链接到数据集'final'是csv格式: https://www.dropbox.com/s/qp35wc4d380hep1/final.csv?dl=0
侧面问题:对于你们中的任何一个幻想足球运动员,我正在直接从S.D.计算我的“风险”因素。玩家的历史幻想点,并在[0,10]的支持下将这个数字标准化。你能想出一个更好的方法来计算给定的球员风险吗?
答案 0 :(得分:9)
您可以通过添加以下约束来完成此操作:
这是更新后的代码:
library(Rglpk)
# number of variables
num.players <- length(final$PLAYER)
# objective:
obj <- final$FPTS_PREDICT_RF
# the vars are represented as booleans
var.types <- rep("B", num.players)
# the constraints
matrix <- rbind(as.numeric(final$position == "QB"), # num QB
as.numeric(final$position == "RB"), # num RB
as.numeric(final$position == "RB"), # num RB
as.numeric(final$position == "WR"), # num WR
as.numeric(final$position == "WR"), # num WR
as.numeric(final$position == "TE"), # num TE
as.numeric(final$position == "TE"), # num TE
as.numeric(final$position %in% c("RB", "WR", "TE")), # Num RB/WR/TE
as.numeric(final$position == "DEF"),# num DEF
diag(final$riskNormalized), # player's risk
final$Salary) # total cost
direction <- c("==",
">=",
"<=",
">=",
"<=",
">=",
"<=",
"==",
"==",
rep("<=", num.players),
"<=")
rhs <- c(1, # Quartbacks
2, # RB Min
3, # RB Max
3, # WR Min
4, # WR Max
1, # TE Min
2, # TE Max
7, # RB/WR/TE
1, # Defense
rep(10, num.players), #HERE, you need to enter a number that indicates how
#risk you are willing to be, 1 being low risk,
# 10 being high risk. 10 is max.
50000) # By default, you get 50K to spend, so leave this number alone.
sol <- Rglpk_solve_LP(obj = obj, mat = matrix, dir = direction, rhs = rhs,
types = var.types, max = TRUE)
最后,您可以通过对final
进行子集化来评估您的解决方案:
final[sol$solution==1,]
# X PLAYER FPTS_PREDICT_LIN FPTS_PREDICT_RF Salary position
# 1 1 A.J. Green 20.30647 20.885558 5900 WR
# 17 18 Andre Holmes 13.26369 15.460503 4100 WR
# 145 156 Giovani Bernard 17.05857 19.521157 6100 RB
# 148 160 Greg Olsen 17.08808 17.831687 5500 TE
# 199 222 Jordy Nelson 22.12326 24.077787 7800 WR
# 215 239 Kelvin Benjamin 16.12116 17.132573 5000 WR
# 233 262 Le'Veon Bell 20.51564 18.565763 6300 RB
# 303 340 Ryan Tannehill 17.92518 19.134305 6700 QB
# 362 3641 SD 5.00000 6.388666 2600 DEF
# risk riskNormalized
# 1 5.131601 3.447990
# 17 9.859006 6.624396
# 145 9.338094 6.274388
# 148 6.517376 4.379111
# 199 9.651055 6.484670
# 215 7.081162 4.757926
# 233 6.900656 4.636641
# 303 4.857983 3.264143
# 362 2.309401 0.000000
对于此问题数据,您已选择宽接收器到弹性位置。