我有一个MxN稀疏csr_matrix
,我想在矩阵的右边添加一些只有零的列。原则上,数组indptr
,indices
和data
保持不变,因此我只想更改矩阵的维度。但是,这似乎没有实现。
>>> A = csr_matrix(np.identity(5), dtype = int)
>>> A.toarray()
array([[1, 0, 0, 0, 0],
[0, 1, 0, 0, 0],
[0, 0, 1, 0, 0],
[0, 0, 0, 1, 0],
[0, 0, 0, 0, 1]])
>>> A.shape
(5, 5)
>>> A.shape = ((5,7))
NotImplementedError: Reshaping not implemented for csr_matrix.
水平堆叠零矩阵似乎也不起作用。
>>> B = csr_matrix(np.zeros([5,2]), dtype = int)
>>> B.toarray()
array([[0, 0],
[0, 0],
[0, 0],
[0, 0],
[0, 0]])
>>> np.hstack((A,B))
array([ <5x5 sparse matrix of type '<type 'numpy.int32'>'
with 5 stored elements in Compressed Sparse Row format>,
<5x2 sparse matrix of type '<type 'numpy.int32'>'
with 0 stored elements in Compressed Sparse Row format>], dtype=object)
这是我最终想要实现的目标。有没有一种快速的方法来重塑我的csr_matrix
而不复制其中的所有内容?
>>> C = csr_matrix(np.hstack((A.toarray(), B.toarray())))
>>> C.toarray()
array([[1, 0, 0, 0, 0, 0, 0],
[0, 1, 0, 0, 0, 0, 0],
[0, 0, 1, 0, 0, 0, 0],
[0, 0, 0, 1, 0, 0, 0],
[0, 0, 0, 0, 1, 0, 0]])
答案 0 :(得分:8)
您可以使用scipy.sparse.vstack
或scipy.sparse.hstack
更快地执行此操作:
from scipy.sparse import csr_matrix, vstack, hstack
B = csr_matrix((5, 2), dtype=int)
C = csr_matrix((5, 2), dtype=int)
D = csr_matrix((10, 10), dtype=int)
B2 = vstack((B, C))
#<10x2 sparse matrix of type '<type 'numpy.int32'>'
# with 0 stored elements in COOrdinate format>
hstack((B2, D))
#<10x12 sparse matrix of type '<type 'numpy.int32'>'
# with 0 stored elements in COOrdinate format>
请注意,输出为coo_matrix
,可以有效地转换为CSR
或CSC
格式。
答案 1 :(得分:5)
你想要做的并不是真正的numpy或scipy理解为重塑。但是对于您的特定情况,您可以创建一个新的CSR矩阵,重复使用原始的data
,indices
和indptr
,而不复制它们:
import scipy.sparse as sps
a = sps.rand(10000, 10000, density=0.01, format='csr')
In [19]: %timeit sps.csr_matrix((a.data, a.indices, a.indptr),
... shape=(10000, 10020), copy=True)
100 loops, best of 3: 6.26 ms per loop
In [20]: %timeit sps.csr_matrix((a.data, a.indices, a.indptr),
... shape=(10000, 10020), copy=False)
10000 loops, best of 3: 47.3 us per loop
In [21]: %timeit sps.csr_matrix((a.data, a.indices, a.indptr),
... shape=(10000, 10020))
10000 loops, best of 3: 48.2 us per loop
因此,如果您不再需要原始矩阵a
,因为默认值为copy=False
,只需执行以下操作:
a = sps.csr_matrix((a.data, a.indices, a.indptr), shape=(10000, 10020))