我是Spark的新手。我能够训练DataSet。但是无法使用经过训练的数据集进行预测。
以下是训练数据的代码,即1800x4000矩阵。
import org.apache.spark.mllib.classification.SVMWithSGD
import org.apache.spark.mllib.regression.LinearRegressionWithSGD
import org.apache.spark.mllib.regression.LabeledPoint
import org.apache.spark.mllib.linalg.Vectors
// Load and parse the data
val data = sc.textFile("data/mllib/ridge-data/myfile.txt")
val parsedData = data.map { line =>
val parts = line.split(' ')
LabeledPoint(parts(0).toDouble, Vectors.dense(parts(1).split(' ').map(_.toDouble)))
}
val firstDataPoint = parsedData.take(1)(0)
// Building the model
val numIterations = 100
val model = SVMWithSGD.train(parsedData, numIterations)
//val model = LinearRegressionWithSGD.train(parsedData,numIterations)
val labelAndPreds = parsedData.map { point =>
val prediction = model.predict(point.features)
(point.label, prediction)
}
val trainErr = labelAndPreds.filter(r => r._1 != r._2).count.toDouble / parsedData.count
println("Training Error = " + trainErr)
现在我加载要用于执行预测的数据:数据是1800值的向量
val test = sc.textFile("data/mllib/ridge-data/data.txt")
但不确定如何使用此数据执行预测。请帮忙。
答案 0 :(得分:0)
首先从textFile加载labeledPoints(请记住,你必须使用saveAsTextFile保存RDD):
JavaRDD<LabeledPoint> test = MLUtils.loadLabeledPoints(init.context, "hdfs://../test/", 30).toJavaRDD();
JavaRDD<Tuple2<Object, Object>> scoreAndLabels = test.map(
new Function<LabeledPoint, Tuple2<Object, Object>>() {
public Tuple2<Object, Object> call(LabeledPoint p) {
Double score = model.predict(p.features());
return new Tuple2<Object, Object>(score, p.label());
}
}
);
现在收集分数并迭代它们:
List<Tuple2<Object, Object>> scores = scoreAndLabels.collect();
for(Tuple2<Object, Object> score : scores){
System.out.println(score._1 + " \t" + score._2);
}
它是Java,但也许你可以转换它:)
但预测值没有意义: -18.841544889249917 0.0 168.32916035523283 1.0 420.67763915879794 1.0 -974.1942589201286 0.0 71.73602841256813 1.0 233.13636224524993 1.0 -1000.5902168199027 0.0 有人知道他们的意思吗?