lm.fit中的错误(x,y,offset = offset,singular.ok = singular.ok,...)0个非na案例

时间:2014-10-17 10:36:21

标签: r loops

我已经就此问题检查了其他问题,但由于问题似乎非常具体,因此无效。

我有一个这样的数据帧(这只是一个简单的例子,下面提供了dput()的示例数据):

year species abundance site county
2005 A       2         SH1  Göttingen
2006 A       0         SH1  Göttingen
2007 A       NA        SH1  Göttingen
2008 A       2         SH1  Göttingen
2009 A       NA        SH1  Göttingen
2010 A       2         SH1  Göttingen
2011 A       NA        SH1  Göttingen
2005 B       2         SH1  Göttingen
2006 B       0         SH1  Göttingen
2007 B       NA        SH1  Göttingen
2008 B       2         SH1  Göttingen
2009 B       NA        SH1  Göttingen
2010 B       2         SH1  Göttingen
2011 B       NA        SH1  Göttingen
2005 A       2         SH1  Göttingen
2006 A       0         SH1  Göttingen
2007 A       NA        SH1  Göttingen
2008 A       2         SH1  Göttingen
2009 A       NA        SH1  Göttingen
2010 A       2         SH1  Göttingen
2011 A       NA        SH1  Göttingen
2005 A       2         SH2  Göttingen
2006 A       0         SH2  Göttingen
2007 A       NA        SH2  Göttingen
2008 A       2         SH2  Göttingen
2009 A       NA        SH2  Göttingen
2010 A       2         SH2  Göttingen
2011 A       NA        SH2  Göttingen

它包含2005 - 2011年每个县(在400多个县中超过1500个地点)的几个不同地点的11种物种的丰度。对于每个地点,每个县,每年,所有物种都已计算在内,因此每年都有NA或数量丰富。每个县的网站数量各不相同。

我想运行以下循环将丰度放入几列:它应创建一个线性模型来计算这些年的人口趋势,并将输出放在另一行中。最后,我希望多年来每个地点的每个物种都有一个趋势:

alldata_lm$slope_abundance_plot <- NA
alldata_lm$p_slope_abundance_plot <- NA

species <- unique(alldata_lm$species)
sites <- unique(alldata_lm$site)

for (i in (1:length(species))) {
  for (k in(1:length(sites))) {        
    print(c(i,k))
    lm1 <-  lm(abundance ~ year, data = alldata_lm[alldata_lm$species == species[i] & alldata_lm$site == sites[k],], na.action=na.omit)
    alldata_lm$slope_abundance_plot[alldata_lm$species == species[i] & alldata_lm$site == sites[k]] <- coefficients(lm1)[2]
    if (nrow(coef(summary(lm1)))>1){ alldata_lm$p_slope_abundance_plot[alldata_lm$species == species[i] & alldata_lm$site == sites[k]] <- coef(summary(lm1))[2,4]}
  }  
}

但是,当我这样做时,它会返回以下错误:

Error in lm.fit(x, y, offset = offset, singular.ok = singular.ok, ...) : 
  alle Fälle NA

同一个循环与非常相似的数据帧完美配合,唯一的区别是当前数据帧包含更多的NA。

在运行循环之前删除NA无济于事。无论丰富列中是否有任何NA,我都会收到错误消息。我认为错误可能发生在其他地方。年份列永远不会包含任何缺失值。

我非常感谢任何帮助!感谢

示例数据

 structure(list(site = structure(c(700L, 700L, 700L, 700L, 700L, 
700L, 700L), .Label = c("bb1", "bb100", "bb101", "bb104", "bb107", 
"bb108", "bb109", "bb11", "bb111", "bb113", "bb115", "bb116", 
"bb117", "bb118", "bb119", "bb120", "bb121", "bb122", "bb123", 
"bb124", "bb125", "bb126", "bb127", "bb129", "bb130", "bb131", 
"bb132", "bb134", "bb135", "bb138", "bb139", "bb14", "bb140", 
"bb143", "bb147", "bb15", "bb150", "bb152", "bb154", "bb155", 
"bb156", "bb157", "bb158", "bb159", "bb163", "bb164", "bb166", 
"bb167", "bb169", "bb170", "bb171", "bb172", "bb173", "bb174", 
"bb175", "bb176", "bb177", "bb178", "bb179", "bb180", "bb181", 
"bb183", "bb186", "bb187", "bb188", "bb19", "bb191", "bb192", 
"bb193", "bb194", "bb197", "bb198", "bb199", "bb20", "bb200", 
"bb201", "bb202", "bb203", "bb204", "bb205", "bb207", "bb208", 
"bb209", "bb21", "bb210", "bb211", "bb212", "bb213", "bb215", 
"bb216", "bb217", "bb218", "bb219", "bb220", "bb221", "bb224", 
"bb225", "bb228", "bb23", "bb230", "bb232", "bb234", "bb237", 
"bb239", "bb242", "bb27", "bb32", "bb35", "bb37", "bb38", "bb39", 
"bb4", "bb40", "bb41", "bb47", "bb49", "bb53", "bb55", "bb58", 
"bb59", "bb6", "bb60", "bb63", "bb65", "bb66", "bb7", "bb70", 
"bb72", "bb73", "bb76", "bb77", "bb79", "bb8", "bb80", "bb81", 
"bb82", "bb84", "bb85", "bb87", "bb89", "bb9", "bb90", "bb91", 
"bb92", "bb93", "bb94", "bb96", "bb97", "bb98", "be14", "be15", 
"be17", "be30", "bw10", "bw100", "bw104", "bw108", "bw111", "bw112", 
"bw12", "bw120", "bw124", "bw126", "bw13", "bw144", "bw146", 
"bw175", "bw183", "bw192", "bw193", "bw198", "bw199", "bw200", 
"bw202", "bw208", "bw210", "bw211", "bw213", "bw215", "bw219", 
"bw225", "bw226", "bw229", "bw236", "bw243", "bw257", "bw262", 
"bw266", "bw268", "bw283", "bw294", "bw3", "bw30", "bw307", "bw326", 
"bw327", "bw338", "bw339", "bw341", "bw35", "bw36", "bw360", 
"bw368", "bw380", "bw381", "bw397", "bw405", "bw42", "bw53", 
"bw58", "bw6", "bw7", "bw84", "bw89", "bw91", "bw92", "bw96", 
"bw97", "by10", "by103", "by109", "by11", "by110", "by111", "by112", 
"by113", "by114", "by115", "by116", "by117", "by118", "by120", 
"by122", "by125", "by126", "by127", "by128", "by129", "by130", 
"by134", "by137", "by14", "by142", "by144", "by146", "by147", 
"by150", "by151", "by152", "by153", "by154", "by155", "by156", 
"by157", "by158", "by159", "by163", "by164", "by166", "by167", 
"by169", "by170", "by171", "by173", "by175", "by176", "by177", 
"by178", "by18", "by180", "by182", "by186", "by187", "by188", 
"by19", "by192", "by193", "by194", "by197", "by200", "by203", 
"by205", "by210", "by212", "by215", "by22", "by222", "by223", 
"by225", "by226", "by229", "by230", "by231", "by233", "by234", 
"by236", "by238", "by239", "by24", "by240", "by241", "by242", 
"by243", "by247", "by248", "by25", "by250", "by251", "by255", 
"by257", "by267", "by268", "by271", "by272", "by274", "by275", 
"by278", "by279", "by28", "by280", "by283", "by284", "by285", 
"by286", "by287", "by289", "by29", "by290", "by291", "by292", 
"by293", "by294", "by295", "by298", "by30", "by303", "by305", 
"by307", "by308", "by310", "by32", "by321", "by322", "by323", 
"by324", "by326", "by331", "by333", "by334", "by337", "by34", 
"by341", "by346", "by347", "by350", "by352", "by356", "by357", 
"by36", "by368", "by37", "by370", "by376", "by378", "by39", "by4", 
"by40", "by41", "by43", "by451", "by452", "by47", "by5", "by52", 
"by53", "by56", "by63", "by64", "by65", "by66", "by67", "by68", 
"by69", "by7", "by72", "by74", "by76", "by79", "by8", "by80", 
"by87", "by88", "by89", "by90", "by91", "by92", "by96", "by97", 
"by98", "hb16", "hb17", "hb18", "hb21", "hb30", "hb5", "hb6", 
"hb7", "hb9", "he100", "he103", "he106", "he107", "he108", "he109", 
"he110", "he111", "he113", "he114", "he115", "he116", "he119", 
"he120", "he122", "he124", "he13", "he130", "he137", "he14", 
"he144", "he145", "he150", "he154", "he18", "he37", "he42", "he46", 
"he47", "he51", "he52", "he66", "he68", "he7", "he70", "he72", 
"he73", "he75", "he82", "he83", "he84", "he85", "he89", "he9", 
"he91", "he93", "he94", "he96", "he97", "hh10", "hh28", "hh29", 
"hh30", "hh41", "hh44", "mv108", "mv109", "mv110", "mv122", "mv124", 
"mv125", "mv126", "mv141", "mv143", "mv15", "mv153", "mv156", 
"mv160", "mv17", "mv24", "mv29", "mv40", "mv41", "mv50", "mv55", 
"mv61", "mv63", "mv76", "mv82", "ni10", "ni100", "ni101", "ni102", 
"ni11", "ni110", "ni111", "ni119", "ni122", "ni125", "ni126", 
"ni13", "ni131", "ni134", "ni135", "ni136", "ni138", "ni14", 
"ni142", "ni146", "ni147", "ni149", "ni15", "ni150", "ni152", 
"ni162", "ni163", "ni166", "ni167", "ni168", "ni169", "ni170", 
"ni171", "ni172", "ni175", "ni182", "ni187", "ni188", "ni189", 
"ni191", "ni192", "ni193", "ni198", "ni2", "ni20", "ni206", "ni215", 
"ni218", "ni225", "ni226", "ni227", "ni231", "ni236", "ni239", 
"ni240", "ni241", "ni242", "ni243", "ni244", "ni246", "ni252", 
"ni257", "ni26", "ni260", "ni263", "ni272", "ni274", "ni282", 
"ni286", "ni290", "ni291", "ni297", "ni298", "ni299", "ni3", 
"ni303", "ni32", "ni34", "ni37", "ni38", "ni39", "ni4", "ni40", 
"ni41", "ni43", "ni45", "ni453", "ni455", "ni46", "ni47", "ni49", 
"ni50", "ni52", "ni55", "ni6", "ni61", "ni63", "ni66", "ni68", 
"ni71", "ni72", "ni73", "ni76", "ni77", "ni85", "ni87", "ni88", 
"ni89", "ni90", "ni91", "ni92", "ni93", "ni95", "ni97", "nw10", 
"nw108", "nw110", "nw112", "nw126", "nw13", "nw130", "nw140", 
"nw142", "nw143", "nw149", "nw154", "nw156", "nw173", "nw182", 
"nw20", "nw25", "nw38", "nw41", "nw5", "nw50", "nw52", "nw53", 
"nw54", "nw55", "nw6", "nw60", "nw63", "nw7", "nw72", "nw73", 
"nw74", "nw84", "nw86", "nw92", "rp101", "rp102", "rp103", "rp106", 
"rp108", "rp109", "rp116", "rp117", "rp120", "rp130", "rp131", 
"rp139", "rp140", "rp143", "rp144", "rp146", "rp21", "rp22", 
"rp23", "rp24", "rp36", "rp4", "rp84", "rp94", "rp99", "sh100", 
"sh101", "sh102", "sh103", "sh106", "sh109", "sh11", "sh111", 
"sh112", "sh117", "sh12", "sh121", "sh123", "sh125", "sh128", 
"sh130", "sh132", "sh14", "sh140", "sh17", "sh18", "sh19", "sh20", 
"sh25", "sh26", "sh27", "sh30", "sh33", "sh34", "sh35", "sh36", 
"sh37", "sh39", "sh42", "sh43", "sh44", "sh45", "sh46", "sh47", 
"sh51", "sh52", "sh54", "sh55", "sh58", "sh59", "sh60", "sh61", 
"sh62", "sh63", "sh65", "sh66", "sh67", "sh69", "sh70", "sh71", 
"sh72", "sh73", "sh74", "sh75", "sh76", "sh78", "sh79", "sh8", 
"sh84", "sh86", "sh88", "sh89", "sh91", "sh93", "sh95", "sh96", 
"sh98", "sh99", "sn104", "sn112", "sn117", "sn120", "sn123", 
"sn131", "sn141", "sn144", "sn145", "sn15", "sn151", "sn158", 
"sn159", "sn16", "sn162", "sn164", "sn165", "sn167", "sn18", 
"sn25", "sn27", "sn28", "sn30", "sn35", "sn40", "sn44", "sn45", 
"sn5", "sn56", "sn69", "sn7", "sn72", "sn74", "sn79", "sn83", 
"sn87", "sn89", "sn9", "sn91", "sn92", "sn93", "sn99", "st1", 
"st100", "st101", "st103", "st105", "st107", "st108", "st109", 
"st11", "st110", "st111", "st112", "st113", "st114", "st115", 
"st116", "st118", "st119", "st120", "st121", "st125", "st126", 
"st127", "st13", "st130", "st134", "st135", "st137", "st139", 
"st140", "st141", "st143", "st144", "st145", "st146", "st147", 
"st148", "st150", "st151", "st153", "st158", "st159", "st160", 
"st162", "st166", "st21", "st24", "st25", "st26", "st27", "st28", 
"st30", "st33", "st34", "st4", "st43", "st47", "st49", "st50", 
"st55", "st56", "st57", "st59", "st60", "st61", "st64", "st69", 
"st70", "st72", "st75", "st77", "st79", "st84", "st87", "st88", 
"st91", "st92", "st97", "st98", "st99", "th100", "th103", "th104", 
"th105", "th112", "th118", "th121", "th123", "th15", "th16", 
"th18", "th19", "th20", "th22", "th26", "th27", "th31", "th32", 
"th36", "th39", "th4", "th40", "th44", "th45", "th49", "th50", 
"th51", "th52", "th55", "th56", "th58", "th59", "th60", "th61", 
"th63", "th64", "th73", "th76", "th8", "th81", "th83", "th85", 
"th91", "th94", "th95", "th96", "th98", "th99"), class = "factor"), 
    year = 2005:2011, species = structure(c(8L, 8L, 8L, 8L, 8L, 
    8L, 8L), .Label = c("common linnet", "common whitethroat", 
    "corn bunting", "eurasian skylark", "northern lapwing", "red-backed shrike", 
    "tree sparrow", "western yellow wagtail", "whinchat", "woodlark", 
    "yellowhammer"), class = "factor"), abundance = c(NA_integer_, 
    NA_integer_, NA_integer_, NA_integer_, NA_integer_, NA_integer_, 
    NA_integer_), county = structure(c(48L, 48L, 48L, 48L, 48L, 
    48L, 48L), .Label = c("Aichach-Friedberg, Landkreis", "Alb-Donau-Kreis", 
    "Altmarkkreis Salzwedel", "Alzey-Worms, Landkreis", "Amberg-Sulzbach, Landkreis", 
    "Ammerland, Landkreis", "Anhalt-Bitterfeld, Landkreis", "Ansbach, Landkreis", 
    "Aschaffenburg, Landkreis", "Augsburg, Landkreis", "Aurich, Landkreis", 
    "Böblingen, Landkreis", "Börde, Landkreis", "Bad Dürkheim, Landkreis", 
    "Bad Kissingen, Landkreis", "Bad Kreuznach, Landkreis", "Bad Tölz-Wolfratshausen, Landkreis", 
    "Barnim, Landkreis", "Bautzen, Landkreis", "Bayreuth", "Bayreuth, Landkreis", 
    "Bergstraße, Landkreis", "Berlin", "Biberach, Landkreis", 
    "Bodenseekreis", "Borken, Kreis", "Brandenburg an der Havel, Kreisfreie Stadt", 
    "Breisgau-Hochschwarzwald, Landkreis", "Bremen, Kreisfreie Stadt", 
    "Bremerhaven, Kreisfreie Stadt", "Burgenlandkreis", "Calw, Landkreis", 
    "Celle, Landkreis", "Cham, Landkreis", "Chemnitz, Stadt", 
    "Cloppenburg, Landkreis", "Coburg, Landkreis", "Cottbus, Kreisfreie Stadt", 
    "Cuxhaven, Landkreis", "Dachau, Landkreis", "Dahme-Spreewald, Landkreis", 
    "Darmstadt-Dieburg, Landkreis", "Deggendorf, Landkreis", 
    "Dessau-Roßlau, Kreisfreie Stadt", "Diepholz, Landkreis", 
    "Dillingen a.d.Donau, Landkreis", "Dingolfing-Landau, Landkreis", 
    "Dithmarschen, Landkreis", "Donau-Ries, Landkreis", "Donnersbergkreis", 
    "Dresden, Stadt", "Ebersberg, Landkreis", "Eichsfeld, Kreis", 
    "Eichstätt, Landkreis", "Eisenach, krsfr. Stadt", "Elbe-Elster, Landkreis", 
    "Emmendingen, Landkreis", "Emsland, Landkreis", "Ennepe-Ruhr-Kreis", 
    "Enzkreis", "Erding, Landkreis", "Erfurt, krsfr. Stadt", 
    "Erlangen-Höchstadt, Landkreis", "Erzgebirgskreis", "Esslingen, Landkreis", 
    "Fürstenfeldbruck, Landkreis", "Fürth, Landkreis", "Forchheim, Landkreis", 
    "Frankfurt (Oder), Kreisfreie Stadt", "Frankfurt am Main, Kreisfreie Stadt", 
    "Freising, Landkreis", "Freudenstadt, Landkreis", "Freyung-Grafenau, Landkreis", 
    "Friesland, Landkreis", "Fulda, Landkreis", "Göppingen, Landkreis", 
    "Görlitz, Landkreis", "Göttingen, Landkreis", "Garmisch-Partenkirchen, Landkreis", 
    "Gießen, Landkreis", "Gifhorn, Landkreis", "Goslar, Landkreis", 
    "Gotha, Kreis", "Grafschaft Bentheim, Landkreis", "Greiz, Kreis", 
    "Höxter, Kreis", "Haßberge, Landkreis", "Halle (Saale), Kreisfreie Stadt", 
    "Hamburg", "Hameln-Pyrmont, Landkreis", "Hamm, Kreisfreie Stadt", 
    "Harburg, Landkreis", "Harz, Landkreis", "Havelland, Landkreis", 
    "Heidekreis, Landkreis", "Heidelberg, Kreisfreie Stadt", 
    "Heidenheim, Landkreis", "Heilbronn, Landkreis", "Heinsberg, Kreis", 
    "Hersfeld-Rotenburg, Landkreis", "Herzogtum Lauenburg, Landkreis", 
    "Hildburghausen, Kreis", "Hildesheim, Landkreis", "Hochsauerlandkreis", 
    "Hochtaunuskreis", "Hof, Landkreis", "Holzminden, Landkreis", 
    "Ilm-Kreis", "Ingolstadt", "Jerichower Land, Landkreis", 
    "Köln, Kreisfreie Stadt", "Kaiserslautern, Landkreis", "Karlsruhe, Kreisfreie Stadt", 
    "Karlsruhe, Landkreis", "Kassel, Landkreis", "Kelheim, Landkreis", 
    "Kitzingen, Landkreis", "Kleve, Kreis", "Konstanz, Landkreis", 
    "Kronach, Landkreis", "Kulmbach, Landkreis", "Kusel, Landkreis", 
    "Kyffhäuserkreis", "Lörrach, Landkreis", "Lüchow-Dannenberg, Landkreis", 
    "Lüneburg, Landkreis", "Lahn-Dill-Kreis", "Landkreis Ludwigslust-Parchim", 
    "Landkreis Mecklenburgische Seenplatte", "Landkreis Nordwestmecklenburg", 
    "Landkreis Rostock", "Landkreis Vorpommern-Greifswald", "Landkreis Vorpommern-Rügen", 
    "Landsberg am Lech, Landkreis", "Landshut, Landkreis", "Leer, Landkreis", 
    "Leipzig, Landkreis", "Lichtenfels, Landkreis", "Limburg-Weilburg, Landkreis", 
    "Lippe, Kreis", "Ludwigsburg, Landkreis", "Märkisch-Oderland, Landkreis", 
    "Märkischer Kreis", "Mühldorf a.Inn, Landkreis", "München, Landeshauptstadt", 
    "München, Landkreis", "Main-Spessart, Landkreis", "Main-Tauber-Kreis", 
    "Main-Taunus-Kreis", "Mainz-Bingen, Landkreis", "Mannheim, Universitätsstadt, Kreisfreie Stadt", 
    "Mansfeld-Südharz, Landkreis", "Marburg-Biedenkopf, Landkreis", 
    "Mayen-Koblenz, Landkreis", "Meißen, Landkreis", "Mettmann, Kreis", 
    "Minden-Lübbecke, Kreis", "Mittelsachsen, Landkreis", "Nürnberg", 
    "Nürnberger Land, Landkreis", "Neckar-Odenwald-Kreis", "Neu-Ulm, Landkreis", 
    "Neuburg-Schrobenhausen, Landkreis", "Neumarkt i.d.OPf., Landkreis", 
    "Neustadt a.d.Aisch-Bad Windsheim, Landkreis", "Neustadt a.d.Waldnaab, Landkreis", 
    "Neustadt an der Weinstraße, Kreisfreie Stadt", "Neuwied, Landkreis", 
    "Nienburg (Weser), Landkreis", "Nordfriesland, Landkreis", 
    "Nordhausen, Kreis", "Nordsachsen, Landkreis", "Northeim, Landkreis", 
    "Oberallgäu, Landkreis", "Oberhavel, Landkreis", "Oberspreewald-Lausitz, Landkreis", 
    "Odenwaldkreis", "Oder-Spree, Landkreis", "Offenbach, Landkreis", 
    "Oldenburg, Landkreis", "Olpe, Kreis", "Ortenaukreis", "Osnabrück, Landkreis", 
    "Ostalbkreis", "Ostallgäu, Landkreis", "Osterholz, Landkreis", 
    "Osterode am Harz, Landkreis", "Ostholstein, Landkreis", 
    "Ostprignitz-Ruppin, Landkreis", "Passau, Landkreis", "Peine, Landkreis", 
    "Pfaffenhofen a.d.Ilm, Landkreis", "Pinneberg, Landkreis", 
    "Plön, Landkreis", "Potsdam-Mittelmark, Landkreis", "Potsdam, Kreisfreie Stadt", 
    "Prignitz, Landkreis", "Rastatt, Landkreis", "Ravensburg, Landkreis", 
    "Regen, Landkreis", "Regensburg, Landkreis", "Region Hannover, Landkreis", 
    "Rems-Murr-Kreis", "Rendsburg-Eckernförde, Landkreis", "Reutlingen, Landkreis", 
    "Rhön-Grabfeld, Landkreis", "Rhein-Kreis Neuss", "Rhein-Neckar-Kreis", 
    "Rhein-Sieg-Kreis", "Rheingau-Taunus-Kreis", "Rheinisch-Bergischer Kreis", 
    "Rosenheim, Landkreis", "Rotenburg (Wümme), Landkreis", 
    "Roth, Landkreis", "Rottweil, Landkreis", "Sächsische Schweiz-Osterzgebirge, Landkreis", 
    "Sömmerda, Kreis", "Südliche Weinstraße, Landkreis", "Südwestpfalz, Landkreis", 
    "Saale-Holzland-Kreis", "Saale-Orla-Kreis", "Saalekreis", 
    "Saalfeld-Rudolstadt, Kreis", "Salzlandkreis", "Schaumburg, Landkreis", 
    "Schleswig-Flensburg, Landkreis", "Schmalkalden-Meiningen, Kreis", 
    "Schwabach", "Schwandorf, Landkreis", "Schweinfurt", "Schweinfurt, Landkreis", 
    "Segeberg, Landkreis", "Siegen-Wittgenstein, Kreis", "Sigmaringen, Landkreis", 
    "Soest, Kreis", "Sonneberg, Kreis", "Spree-Neiße, Landkreis", 
    "Stade, Landkreis", "Starnberg, Landkreis", "Steinburg, Landkreis", 
    "Steinfurt, Kreis", "Stendal, Landkreis", "Stormarn, Landkreis", 
    "Straubing-Bogen, Landkreis", "Stuttgart, Landeshauptstadt, Kreisfreie Stadt", 
    "Tübingen, Landkreis", "Teltow-Fläming, Landkreis", "Traunstein, Landkreis", 
    "Uckermark, Landkreis", "Uelzen, Landkreis", "Unstrut-Hainich-Kreis", 
    "Unterallgäu, Landkreis", "Vechta, Landkreis", "Verden, Landkreis", 
    "Viersen, Kreis", "Vogelsbergkreis", "Würzburg, Landkreis", 
    "Waldeck-Frankenberg, Landkreis", "Wartburgkreis", "Weißenburg-Gunzenhausen, Landkreis", 
    "Weilheim-Schongau, Landkreis", "Weimar, krsfr. Stadt", "Weimarer Land, Kreis", 
    "Werra-Meißner-Kreis", "Wesel, Kreis", "Wesermarsch, Landkreis", 
    "Westerwaldkreis", "Wetteraukreis", "Wiesbaden, Landeshauptstadt, Kreisfreie Stadt", 
    "Wittenberg, Landkreis", "Wittmund, Landkreis", "Wolfenbüttel, Landkreis", 
    "Wuppertal, Kreisfreie Stadt", "Zollernalbkreis", "Zwickau, Landkreis"
    ), class = "factor"), slope_abundance_plot = c(NA_real_, 
    NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_
    ), p_slope_abundance_plot = c(NA_real_, NA_real_, NA_real_, 
    NA_real_, NA_real_, NA_real_, NA_real_)), .Names = c("site", 
"year", "species", "abundance", "county", "slope_abundance_plot", 
"p_slope_abundance_plot"), row.names = c(61L, 75L, 76L, 91L, 
92L, 93L, 134L), class = "data.frame")

1 个答案:

答案 0 :(得分:2)

如果我打印您的子集,我会看到:

    site year                species abundance                  county slope_abundance_plot p_slope_abundance_plot
61  sh47 2005 western yellow wagtail        NA Dithmarschen, Landkreis                   NA                     NA
75  sh47 2006 western yellow wagtail        NA Dithmarschen, Landkreis                   NA                     NA
76  sh47 2007 western yellow wagtail        NA Dithmarschen, Landkreis                   NA                     NA
91  sh47 2008 western yellow wagtail        NA Dithmarschen, Landkreis                   NA                     NA
92  sh47 2009 western yellow wagtail        NA Dithmarschen, Landkreis                   NA                     NA
93  sh47 2010 western yellow wagtail        NA Dithmarschen, Landkreis                   NA                     NA
134 sh47 2011 western yellow wagtail        NA Dithmarschen, Landkreis                   NA                     NA

如您所见,所有丰富值均为NA,这是错误消息告诉您的内容。您应该使用tryCatch来处理这些子集。

(顺便说一下,dput输出是如此之大,因为它包含所有因子级别。)